Die Mathe-Redaktion - 21.08.2017 21:24 - Registrieren/Login
Auswahl
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter Apr. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 221 Gäste und 22 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Mathematik: Konstruktion des regelmäßigen Siebzehnecks
Freigegeben von matroid am Mi. 19. Oktober 2016 20:06:15
Verfasst von Yakob - (1190 x gelesen)
Mathematik 

Eine siebzehnstrahlige "Sonne"


Überlegungen zur Vereinfachung der Konstruktion des regulären 17-Ecks


Das Wappen der durch Gemeindefusion im Jahr 2011 entstandenen Gemeinde "Glarus Süd" zeigt eine siebzehnstrahlige gelbe Sonne auf blauem Grund:




Das ist unter den Wappensymbolen eine absolute Rarität. In der Heraldik kommen zum Beispiel Sonnen mit 8, 12, 16 oder 32 Strahlen vor. Sie haben den (wenigstens für frühere Wappendesigner wichtigen) Vorteil, dass man die entsprechenden regelmäßigen Vielecke mit den klassischen Methoden der Geometrie, also mittels Zirkel und Lineal, exakt konstruieren kann. Eine Ausnahme ist da etwa die 28-strahlige Sonne im Wappen von Wiesbaden-Sonnenberg. Das reguläre 28-Eck ist nicht ZL-konstruierbar, weil dies schon für das reguläre Siebeneck nicht der Fall ist.
Für die meisten Laien ziemlich unbegreiflich ist deshalb, dass die Konstruktion des regelmäßigen 17-Ecks trotzdem möglich sein soll.

Für den vorliegenden Artikel habe ich, ausgehend von den früher bekannten, recht komplizierten und unübersichtlichen Konstruktionen, eine wesentlich einfachere und kurze Darstellung entwickelt.
mehr... | 9012 Bytes mehr | 15 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


Mathematik: Moduln sind möglicherweise frei
Freigegeben von matroid am Do. 13. Oktober 2016 13:11:01
Verfasst von Triceratops - (778 x gelesen)
Mathematik 

Moduln sind möglicherweise frei

Aus der linearen Algebra kennen wir den Beweis, dass ein endlich-erzeugter Vektorraum eine Basis hat. Man nimmt sich ein Erzeugendensystem und streicht solange "überflüssige" Vektoren, bis ein minimales Erzeugendensystem und damit eine Basis vorliegt. In diesem Artikel schauen wir uns die dabei verwendeten logischen Grundlagen an. Aus der Analyse extrahieren wir einen interessanten Satz aus der kommutativen Algebra, der in etwa aussagt, dass gewisse Moduln möglicherweise frei sind.
mehr... | 19860 Bytes mehr | 3 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


Mathematik: SEAR: Mengen, Elemente und Relationen
Freigegeben von matroid am Do. 22. September 2016 15:52:18
Verfasst von Triceratops - (1349 x gelesen)
Mathematik 

SEAR: Mengen, Elemente und Relationen

Eine strukturelle Mengenlehre


Die Mathematik wird üblicherweise mithilfe der Mengenlehre fundiert, und die Mengenlehre wird üblicherweise als die Theorie des Axiomensystems <math>\mathsf{ZF}</math> von Zermelo und Fraenkel bzw. seiner Varianten angesehen. Es gibt allerdings noch andere Axiomensysteme, welche zu einer äquivalenten Mengenlehre führen. Ich stelle in diesem Artikel eines dieser Axiomensysteme vor. Es heißt <math>\mathsf{SEAR}</math>, was eine Abkürzung für sets, elements and relations ist. Es wurde vor einigen Jahren von Michael Shulman entwickelt und bisher nur im nLab veröffentlicht. Das Axiomensystem verdient aber eine größere Aufmerksamkeit, weil es im Gegensatz zu <math>\mathsf{ZF}</math> eine typisierte und strukturelle Mengenlehre ist.
mehr... | 54652 Bytes mehr | 12 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


Mathematik: Treffen im Oberharz zum Ende September
Freigegeben von matroid am Sa. 13. August 2016 23:02:14
Verfasst von gonz - (924 x gelesen)
Veranstaltungen 
Ich habe mich mit Jürgen getroffen, genauer gesagt hat er mich heute hier im Oberharz in Wildemann besucht, und wir haben die Idee gehabt, dass es ggf. mehr Interessenten an einem kleinen Treffen geben könnte. Eigentlich liegen wir hier für Mittel- bis Norddeutschland ganz günstig  und sind aus Hannover, Braunschweig, Göttingen und Raum Magdeburg  evtl. noch aus Jena in ein bis zwei Autostunden erreichbar.
mehr... | 1195 Bytes mehr | 9 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


Mathematik: Der große Bruder des Harborth-Graphen
Freigegeben von matroid am So. 17. Juli 2016 17:57:58
Verfasst von Slash - (450 x gelesen)
Mathematik 

Der große Bruder des Harborth-Graphen

In diesem Artikel stelle ich einen neuen 4-regulären Streichholzgraphen mit 108 Kanten vor. Dieser Graph - siehe rechts - wurde von StefanVogel, haribo und mir als Team im Verlauf unseres Streichholzgraphen-Threads hier auf dem Matheplaneten entdeckt und auch erstmals präsentiert. Er ist nach dem sehr ähnlich aussehenden Harborth-Graphen mit 104 Kanten das neue zweitkleinste bekannte Beispiel eines 4-regulären Streichholzgraphen, und löst damit den erst kürzlich hier präsentierten Graphen mit 114 Kanten ab. Wie sich der neue Graph in wenigen Schritten aus dem Harborth-Graphen konstruieren lässt, und dass beide Graphen wirklich existieren, soll hier gezeigt werden.
mehr... | 20093 Bytes mehr | Kommentare? | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


Mathematik: Beweglichkeit eines Streichholzgraphen bestimmen
Freigegeben von matroid am Sa. 09. Juli 2016 13:06:44
Verfasst von StefanVogel - (358 x gelesen)
Mathematik 
Beweglichkeit eines Streichholzgraphen bestimmen

<math>\begin{array}{r} \textit{1,58} \\ \textit{-0,15} \\ \textit{-0,34} \\ \textit{\underline{-0,73}}\\ \textit{0,36} \end{array}</math>
3 plus 4 ist 7, plus 5 ist 12, 8 minus 12 geht nicht, also 1 borgen, 18-12 ist 6. So haben meine Großeltern immer den Einkauf vorgerechnet, extra ausführlich, damit ich etwas lerne dabei. Es war auch ein besonderer Moment, wenn dann die geborgte 1 in der Zehnerspalte eingetragen und dort im nächsten Durchlauf mit dazugezählt wurde. Also wenn es nicht weitergeht, 1 borgen und dazuzählen.



Mit dieser Methode möchte ich nun ein Gleichungssystem lösen und darauf aufbauend die Beweglichkeit eines Streichholzgraphen bestimmen. Verwendet werden die Begriffe inverse, reguläre, singuläre, transponierte Matrix, Lösungsmenge von homogenen und inhomogenen Gleichungssystemen, Basis, linear abhängige Zeilen und Spalten, Determinante sowie aus der Mechanik der Begriff Freiheitsgrad.

mehr... | 71096 Bytes mehr | Kommentare? | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


Mathematik: Verbesserung von Eingebetteten Runge-Kutta-Verfahren
Freigegeben von matroid am So. 03. Juli 2016 20:56:22
Verfasst von Higlav - (949 x gelesen)
Mathematik 


Vorwort

Im Rahmen einer kleineren Projektarbeit zur Verbesserung meines Notenschnittes in meinem Numerik-Modul entwickelte ich eher am Rande und per Zufall eine Schrittweitensteuerung für eingebettete Runge-Kutta-Verfahren, welche eine gewisse Verbesserung zum klassischen Algorithmus bietet. In diesem Artikel werde ich diese Optimierung vorstellen.
Vielleicht ist "Verbesserung" etwas unglücklich gewählt. Bei Bedarf ändere ich es auch auf "Modifikation".



Navigation

  1. Einführung
  2. Grundlagen
    1. Schrittweitensteuerung
    2. Eingebettete Verfahren
  3. Die verbesserte Schrittweitenabschätzung
  4. Programmierung
  5. Vergleich zum herkömmlichen Algorithmus
  6. Fazit


mehr... | 61931 Bytes mehr | 6 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


Mathematik: Die Gelfand-Transformation - Teil 2
Freigegeben von matroid am So. 26. Juni 2016 10:11:44
Verfasst von Triceratops - (827 x gelesen)
Mathematik 

Die Gelfand-Transformation

In diesem zweiten Teil des Artikels führen wir C*-Algebren ein und benutzen die Gelfand-Transformation aus dem ersten Teil, um kommutative C*-Algebren zu klassifizieren. Wir besprechen ebenfalls den nicht-unitalen Fall. Die Gelfand-Transformation für die nicht-unitale Banachalgebra <math>L^1(\mathbb{R})</math> führt zur Fourier-Transformation.

Inhalt
Teil 1.
1. Der Begriff einer Banachalgebra
2. Das Spektrum eines Elementes
3. Die Resolventenfunktion
4. Der Charakterraum
5. Die Gelfand-Transformation
Teil 2.
6. Der Begriff einer C*-Algebra
7. Der Satz von Gelfand-Neumark
8. Der Funktionalkalkül
9. Banachalgebren ohne Eins
10. Die Fourier-Transformation
mehr... | 65455 Bytes mehr | 4 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel aufmerksam machen


[Weitere 8 Artikel] [Neueste Artikel]
 

  
Buchbesprechung

J. Richard Gott
Zeitreisen in Einsteins Universum

Rezensiert von cis:
Mit amüsanten Überschriften wie "Gott hält Zeitreisen für möglich" titelten unlängst manche Boulevardblätter. Der Autor geht sachlich und verständlich und vor allem ernsthaft an dieses, teils gewagte, Thema ran. Natürlich rücken dabei Stichwörter wie Überlichtgeschwindigkeit, Wur ... [mehr...]
: Zukunft :: Vergangenheit :: Überlichtgeschwindigkeit :: Wurmlöcher :: Relativität :: Zeitmaschine :
Umfrage
50% eines Jahrgangs machen Abitur. Das finde ich
 
erstrebenswert
normal
unrealistisch
furchtbar
Elite lehne ich ab!
Umfragen sind blöd!
Bei uns heißt das Matura!
 
 
vorherige Umfragen
 
Stimmen: 369 | Kommentare 11
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
Dienstag, 08. März


Sonntag, 28. Februar


Samstag, 20. Februar


Donnerstag, 18. Februar


Donnerstag, 11. Februar


Mittwoch, 10. Februar


Montag, 08. Februar


Freitag, 05. Februar


Montag, 01. Februar


Samstag, 30. Januar


Mittwoch, 27. Januar


Donnerstag, 14. Januar


Donnerstag, 17. Dezember


Freitag, 13. November


Freitag, 30. Oktober


Samstag, 17. Oktober


Sonntag, 18. Oktober


Freitag, 16. Oktober


Donnerstag, 08. Oktober


Dienstag, 08. September


Freitag, 31. Juli


Donnerstag, 30. Juli


Dienstag, 21. Juli


Sonntag, 12. Juli


Mittwoch, 24. Juni


Freitag, 19. Juni


Donnerstag, 18. Juni


Dienstag, 16. Juni


Ältere Ärtikel

TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2017 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]