Die Mathe-Redaktion - 21.11.2017 08:51 - Registrieren/Login
Auswahl
Schwarzes Brett
Fragensteller hat Anwort gelesen, aber bisher nicht weiter reagiert2017-11-20 21:29 bb
Matheformeln mit MathML
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 574 Gäste und 15 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
 Notizbuch der Arbeitsgruppe Alexandria
Logo der Arbeitsgruppe AlexandriaAlexandriaRUHT
Arbeitsgruppe Alexandria auf dem Matheplaneten
Schaffung und fortlaufende Pflege des Stichwortkatalogs für die Artikel auf dem Matheplaneten.

Kontakt:
matroid
  Alle Register zeigen, die initial gezeigt werden sollen  5 22 55 127 52 88 27 9 88 18 43 24 9 386 114 90     [RegView] [Hilfe] Notizsymbol Notizsymbol Nur Einträge mit Dateianlage zeigen, aus allen Registern Öffentliche Register aller Notizbücher Übersicht aller Arbeitsgruppen  Zum eigenen Notizbuch Briefsymbol   Suchen im Notizbuch
Aufsteigend nach laufender Nummer01Absteigend nach laufender Nummer  Aufsteigend nach NamenAZAbsteigend nach Namen  Aufsteigend nach Datum der NotizDDAbsteigend nach Datum der Notiz
Einträge zum Stichwort Abbildungen

Eine Abbildung einer Menge M in eine Menge N heißt surjektiv, wenn jedes Element n Î N in der Menge der Bilder von Elementen aus M unter dieser Abbildung vorkommt. Kurz geschrieben: f: M -> N heißt surjektiv : " nÎN $ m ÎM: f(m) = n. Wieviele verschiedene surjektive Abbildungen gibt es, wenn
Im Teil 1 hatte ich eine Summenformel für die Anzahl der surjektiven Abbildungen einer endlichen Menge M auf eine endliche Menge N hergeleitet. Für diese Aufgabenstellung gibt es eine schöne Rekursionsgleichung: Für die Anzahl A(n,k) der surjektiven Abbildungen einer n-elementigen Menge auf eine

Es wurde bereits hier ein Artikel über den Satz von Schröder-Bernstein geschrieben. Dieser besagt folgendes: Gibt es Injektionen A -> B, B -> A, so gibt es eine Bijektion A -> B.

--- 3 Einträge Druckansicht der Liste ---

Heute, Gestern, vor 2 oder 3 Tagen geändert

 

 

 

 

 

 

Notizbuch der Arbeitsgruppe Alexandria



[Zum Seitenanfang]
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2017 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]