Die Mathe-Redaktion - 25.11.2017 12:14 - Registrieren/Login
Auswahl
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 641 Gäste und 16 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
 Notizbuch der Arbeitsgruppe Alexandria
Logo der Arbeitsgruppe AlexandriaAlexandriaRUHT
Arbeitsgruppe Alexandria auf dem Matheplaneten
Schaffung und fortlaufende Pflege des Stichwortkatalogs für die Artikel auf dem Matheplaneten.

Kontakt:
matroid
  Alle Register zeigen, die initial gezeigt werden sollen  5 22 55 127 52 88 27 9 88 18 43 24 9 386 114 90     [RegView] [Hilfe] Notizsymbol Notizsymbol Nur Einträge mit Dateianlage zeigen, aus allen Registern Öffentliche Register aller Notizbücher Übersicht aller Arbeitsgruppen  Zum eigenen Notizbuch Briefsymbol   Suchen im Notizbuch
Aufsteigend nach laufender Nummer01Absteigend nach laufender Nummer  Aufsteigend nach NamenAZAbsteigend nach Namen  Aufsteigend nach Datum der NotizDDAbsteigend nach Datum der Notiz
Einträge zum Stichwort Lineare Algebra

Einführung zu Symmetriegruppen. Was sind Symmetrien und wie beschreibt man diese mit Hilfe der Gruppentheorie?
Symmetriegruppen §3 In diesem Artikel wollen wir uns ein paar endliche Symmetriegruppen anschauen. Im Mittelpunkt wird die Diedergruppe stehen. Zuvor führen wir aber einige Begriffe, wie den Fixpunkt, den Schwerpunkt oder die Bahn einer endlichen Symmetriegruppe ein. W
In diesem Artikel möchte ich über das Transformationsverhalten von Objekten aus der linearen Algebra am Beispiel von Vektoren, Dualvektoren, linearen Abbildungen und Bilinearformen sprechen und im Anschluss noch kurz an die in der physikalischen Literatur omnipräsenten Basisdarstellungen von Tensore
Skalarprodukt und Kreuzprodukt im R³ Der folgende Inhalt entstand in einem Faden, in dem über Einführungsmöglichkeiten der Begriffe Skalar- und Kreuzprodukt im Schulunterricht diskutiert wurde, und wurde hier noch etwas ergänzt und zusammengefaßt. Es handelt sich um eine Grundeinführung fü

Ein Artikel zu den mathematischen Grundlagen der Quantenphysik. Vektoren in endlichdimensionalen Hilberträumen dienen zur Modellierung der Zustände eines physikalischen Systems. Es wird ein Ausblick auf die Theorie in unendlichdimensionalen Hilberträumen gegeben.

Die In der Schule lernt man schon Abstände zwischen Ebenen, Geraden und Punkten zu berechnen, und das häufigste Hilfsmittel ist wohl die . Ich möchte diese Normalenform auf n-dimensionale affine Räume verallgemeinern, womit man dann eine Möglichkeit hat
Der Satz des Pythagoras wird schon in der Schule vermittelt und es gibt fast niemanden der ihn nicht kennt. Vielleicht hat man sich auch schon gefragt, ob es nicht vielleicht ein Analogon im Dreidimensionalen gibt. Dieser kleine Artikel soll diese Frage beantworten
Aus der Linearen Algebra kennen wir einige :      label(1)bigdarkgreen dim(U)+dim(W)=dim(U cut W)+dim(U + W)  label(2)bigdarkgreen dim(Bild(f))+dim(Kern(f))=dim(V)   label(3)bigdarkgreen dim(V/U)+dim(U)=dim(V)   Dabei sind U,W Unterräume eines K-Vektorraumes V und

Auftakt der Serie "Lineare Algebra und Analytische Geometrie" für Oberstufenschüler. Der erste Teil behandelt Lineare Gleichungssysteme und das Gaußsche Eliminationsverfahren und legt den Grundstein für die kommenden Teile.

Humorvolle Betrachtung von Vektorräumen über GF(2)

Schon mehrmals wurde hier oder anderswo nach einem Buch mit dem Titel "Lineare Algebra für Dummies" gefragt. In der Linearen-Algebra-Vorlesung begegnen Erstsemester der strengen Mathematik gewöhnlich zum ersten Mal. Sie (die Mathematik) gibt sich unzugänglich, bedeutungslos und unanschaul ...
Und hier: LAfD als pdf
1. Das ideale LA-Buch Zunächst möchte ich hier einige Richtlinien für ein meiner Meinung nach verständliches, gutes LA-Buch formulieren. An diesem Idealbild habe ich die Bewertung, der unter Punkt 3 vorgestellten, Bücher orientiert: Was ich bei so ziemlich allen Büchern, welche mir während ...
Kapitel 2: Darstellungsmatrizen linearer Abbildungen zwischen endlich-dimensionalenVektorräumen bezüglich verschiedener Basen  Hallo zusammen, ich möchte mich in diesem kleinen Abschnitt mit einem wohl oft zu unrecht als "kompliziert" verschrieenen Thema der linearen Algebra befassen. Wie ...
Kapitel 2 ½ : Transformationsmatrizen Oben haben wir gesehen, wie man die Darstellungsmatrix einer Linearen Abbildung bezüglich verschiedener Basen berechnet. An dieser Stelle möchte ich eine leicht abgewandelte Form davon vorstellen, welche das Verfahren etwas mehr formalisiert. Das Zaub ...
Kapitel 3: Determinante: Was ist das?!     Hallo an Alle! In diesem Kapitel geht es um die Determinantenfunktion, welche zum Beispiel für die Eigenwerttheorie und die Lösbarkeit linearer Gleichungssysteme eine grosse Bedeutung hat. Die vorliegende kurze Abhandlung soll vor allem auf d ...
Kapitel 4: Lineare Gleichungssysteme Hallo an Alle! In diesem Abschnitt soll die Theorie der Linearen Gleichungssysteme mal ganz von vorne behandelt werden. In den vorigen Kapiteln ging es um Lineare Abbildungen, Matrizen und Determinanten, welche nützliche Hilfsmittel im Umgang mit linearen ...
Ich möchte hier einige Ausführungen zur Überführung von Matrizen in Normalform oder kanonische Form machen. Im Vordergrund sollen dabei die Begriffe stehen, auf Beweise werde ich weitgehend verzichten, sonst würde der Rahmen, den ich mir vorgegeben habe, gesprengt. Ich werde dabei die moderne Auffa ...
Kapitel 5 Diagonalisierbarkeit In diesem Artikel soll es rund ums 'Diagonalisieren’ von Linearen Abbildungen und Matrizen gehen. Dabei werden uns Begriffe wie 'Eigenwerte’, 'Eigenvektoren’ und 'charakteristisches Polynom’ begegnen, welche sich als sehr hilfreich für diese Theorie herauss ...
Forum-Beiträge der letzten Woche haben mich dazu angeregt, eine Verbindung von Kombinatorik, Permutationen, Matrizen, Determinanten und Permanenten zu erkennen, und darüber zu schreiben. Nach den notwendigen Vorbereitungen beweise ich das Hauptergebnis: Die Anzahl der ungeraden Permutationen ohne Fixpunkt ist gleich der Anzahl der Permutationen mit genau zwei Fixpunkten.
Mit diesem Artikel möchte ich euch zeigen, wie man eine Hauptachsentranformation durchführt. Zunächst zeige ich euch allgemein, also im IR^n, eine Hauptachsentransformation. Weil ich aber nicht vorhabe, jedes kleinste Detail zu beweisen, muss ich ein paar Ke ...
Schon öfter habe ich mich nach einer expliziten Formel (oder mathematisch hochtrabender: „geschlossene Darstellung“ ;-) ), für die Anzahl aller Permutationen einer endlichen Menge, die eine bestimmte Anzahl an Fixpunkten besitzen, umgeseh
Sammlung von ausgewählten, nützlichen Rechen-und Beweistricks-empfehlenswert-, Integrale mit trigonometrischen Funktionen, Partialbruchzerlegung, Substitution rükwärts,Lineare Unabhängigkeit, Basisergänzung,Euklidischer Algorithmus und Isomorphie unendlicher Gruppen
Oft wird in Büchern oder Skripten nach der Definition der Determinante bewiesen, dass die Leibnizformel die Forderungen erfüllt und sie auch die einzige Funktion ist. Existenz und Eindeutigkeit eben. Die Beweise findet man auch hier in Artikelform.
Elementar gehaltener Artikel über selbige inklusive eines konstruktiven Beweis' ihrer Existenz.
Ein Beweis einer Rangformel für Produkte von Matrizen, die sehr einfach verschiedene andere Standardaussagen der LA wie "Zeilenrang = Spaltenrang" impliziert.

Ein wenig Hauptachsentransformation bei gedrehten Kegelschnitten (KS)
Beweis der Äquivalenz von "Jeder Vektorraum hat eine Basis" und dem Auswahlaxiom.
Untersuchung der Sinnhaftigkeit von Tensorprodukten unendlich vieler Moduln. u.A. wird neben der üblichen Definition über multilineare Abbildungen eine weitere Definition für Algebren vorgestellt und deren Auswirkungen besprochen.
Die Theorie linearer Differentialgleichungen mit konstanten Koeffizienten. Angabe der Standardlösungen für die homogene Gleichung und Beweis dessen. Lösungen für die inhomogene Gleichung.
Beweis des Satzes von Cayley-Hamilton durch ein Dichtsheitsargument in der Zariski-Topologie.
Einführung in die multilineare Algebra mit einer ausführlichen Besprechung von multilinearen Abbildungen und Tensorprodukten.
Erster Artikel der Serie über globale Analysis. Es geht in diesem Teil um (Alternierende) Multilinearformen.
Beweis des Fortsetzungssatzes von Witt für alternierende und hermitesche Sesquilinearformen sowie quadratische Formen. Anwendungen.

Jemand fragt:"Bin ich hier richtig zum Aufgabenstellen? Ich weiß nicht was ich bei der Aufgabe rechnen muss: Bitte um Hilfe! f sei diejenige Abbildung, die zu jedem Vektor (x1;x2;x3) e R³ den Vektor (x1+x2; x2-x3) e R² zuordnet. Zeigen Sie, dass f linear ist." Bemerkenswert an der Fragestellung ist ...

--- 35 Einträge Druckansicht der Liste ---

Heute, Gestern, vor 2 oder 3 Tagen geändert

 

 

 

Notizbuch der Arbeitsgruppe Alexandria



[Zum Seitenanfang]
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2017 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]