Die Mathe-Redaktion - 23.05.2017 03:04 - Registrieren/Login
Auswahl
Schwarzes Brett
Fragensteller hat Anwort gelesen, aber bisher nicht weiter reagiert2017-05-22 20:50 bb
Duale Polyeder
Fragensteller hat Anwort gelesen, aber bisher nicht weiter reagiert2017-05-22 17:30 bb
Fahren zum MPCT
Wartet auf Antwort2017-05-21 17:41 bb ?
Rechnung auf den Linien
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter Apr. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 304 Gäste und 1 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Mathematik: Klassifikation beschränkter Torsionsmoduln
Freigegeben von matroid am Do. 04. Mai 2017 09:52:26
Verfasst von Triceratops - (270 x gelesen)
Mathematik 

Klassifikation beschränkter Torsionsmoduln

Eine abelsche Gruppe <math>A</math> heißt beschränkt, wenn es eine natürliche Zahl <math>n > 0</math> gibt mit <math>n \cdot A = 0</math>. Es hat also jedes Element eine endliche Ordnung, und diese endlichen Ordnungen können beschränkt werden. Zum Beispiel ist jede endliche abelsche Gruppe beschränkt (man kann <math>n=\mathrm{ord}(A)</math> nehmen), aber es ist auch jede (unendliche) direkte Summe <math>A = \bigoplus_{i \in I} \mathds{Z}/n_i </math> endlicher zyklischer Gruppen beschränkt, solange <math>\{n_i : i \in I\}</math> beschränkt ist. Tatsächlich hat jede beschränkte abelsche Gruppe diese Form; das beweisen wir in diesem Artikel. Es handelt sich um eine Verallgemeinerung des Struktursatzes für endliche abelsche Gruppen. Die Eindeutigkeit der Zerlegung im Falle von Primpotenzen beweisen wir mithilfe der Ulm-Invarianten. Allgemeiner gilt dies alles auch für beschränkte Moduln über einem Hauptidealring.
mehr... | 11595 Bytes mehr | 1 Kommentar | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


buhs Montagsreport: „buh: Sonn‘ am Abend“
Freigegeben von matroid am Mo. 01. Mai 2017 16:39:09
Verfasst von buh - (303 x gelesen)
Bildung 
Urlogo für buhs Montagsreport
„buh: Sonn‘ am Abend“

Auch wenn schon Montag ist …
 

Berlin: Wegen der Vorarbeiten zu den Maifeierlichkeiten erscheint der versprochene Vierzeiler erst heute.

Reinkarnation
An einem Zahlengrab ich stand
und sah, wie eine Acht verschwand.
Und wie ich in den Abgrund stier‘,
kommt sie zurück als Doppel-Vier.


Mit freundlichen Maigrüßen von
buh2k+17


mehr... | 4 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | buhs Montagsreport


Mathematik: Einladung zum MPCT 2017
Freigegeben von matroid am So. 09. April 2017 21:49:01
Verfasst von MontyPythagoras - (1241 x gelesen)
Matroids Matheplanet 
 
mehr... | 1843 Bytes mehr | 7 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Stern Mathematik: Ein wenig Geometrie
Freigegeben von matroid am Mi. 15. Dezember 2004 23:33:46
Verfasst von Zaos - (4886 x gelesen)
Mathematik 
Ein wenig Geometrie

In diesem Artikel möchte ich Euch, liebe Planetarier, einige schöne Anwendungen der Topologie in der Geometrie und auch im Alltag vorstellen. Als "Höhepunkt" werde ich die Frage beantworten, ob es immer möglich ist, dass man ein belegtes Brötchen, ganz egal wie die Teile aufeinander liegen, gerecht aufteilen kann, das heißt, dass man einen geraden Schnitt machen kann, so dass alle drei Komponenten des Brötchens gleichzeitig in zwei massengleiche Teile geschnitten werden.

Dabei sollte man sich nicht vorher schon durch den Begriff "Topologie" abschrecken lassen. Ich werde keine schweren Details aufführen, sondern eher anschaulich argumentieren. Auf diese Weise möchte ich euch Einblicke in die Welt der geometrischen Topologie vermitteln.
mehr... | 15646 Bytes mehr | 15 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: Ableitungen mit dualen Zahlen
Freigegeben von matroid am Di. 04. April 2017 16:19:13
Verfasst von Triceratops - (578 x gelesen)
Mathematik 

Ableitungen mit dualen Zahlϵn

In diesem Artikel geht es um den Ring der dualen Zahlen <math>R[\varepsilon]</math> und wie sich mit ihm elegant ohne einen Limesprozess Ableitungen von Polynomen, rationalen Funktionen und Potenzreihen definieren und berechnen lassen. Grundlage dafür ist die Gleichung <math>f(T+\varepsilon)=f(T) + f'(T) \varepsilon</math>. Dieses Vorgehen hat Anwendungen auf das automatische Differenzieren und kann zugleich als elementarer Einstieg in die glatte infinitesimale Analysis gesehen werden.
mehr... | 18079 Bytes mehr | 4 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


buhs Montagsreport: Gefahr durch schwarze Löcher gebannt
Freigegeben von matroid am Mo. 03. April 2017 19:48:24
Verfasst von buh - (282 x gelesen)
Bildung 
Das Gerno-Logo für buhs Montagsreport
Gefahr durch schwarze Löcher gebannt

Neutralisierung quasi gelungen
 

03869 Duemmer. Erschien uns der „Erbe der Titanen“, der „PI-Oberrat der Geometrie“ oder „Zahlando der Rechenkunst“ bisher nur als Nerv im Fleische der Mathematik, ist es Gerno Twolte und Team®  nun auch gelungen, weitere Wissenschaftsbereiche aufzureißen und dort Sensationelles zu vollbringen:
Schwarze Löcher sind nicht länger eine Gefahr!

In der 2017-er Ausgabe der „AnnPhysofl“ veröffentlichte der neu zum Team® hinzugestoßene  Tr. mess*. Vysco Bolidi einen Artikel, in dem er überzeugend nachweist, dass
mehr... | 2906 Bytes mehr | 2 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | buhs Montagsreport


Mathematik: Zappa-Szép-Produkte - Teil 2
Freigegeben von matroid am So. 12. März 2017 14:46:21
Verfasst von Triceratops - (133 x gelesen)
Mathematik 

Zappa-Szép-Produkte

Im 1. Teil haben wir uns mit dem Zappa-Szép-Produkt von Gruppen bzw. Monoiden befasst, einer naheliegenden Verallgemeinerung des semidirekten Produktes. Insbesondere haben wir gesehen, dass jedes Distributivgesetz zwischen zwei Monoiden ein Zappa-Szép-Produkt liefert, und umgekehrt. In diesem 2. Teil werden wir nun dasselbe für Monoidobjekte in monoidalen Kategorien beweisen. Es werden daher auch Grundkenntnisse der Kategorientheorie vorausgesetzt. An die Stelle von Rechnungen mit Elementen treten dann kommutative Diagramme. Der Vorteil dieser Allgemeinheit besteht unter anderem darin, dass man für jede konkrete Wahl der monoidalen Kategorie ein eigenes Zappa-Szép-Produkt bekommt. Für die monoidale Kategorie der Moduln bedeutet das etwa, dass man ein Zappa-Szép-Produkt für Algebren bekommt, das üblicherweise schiefes oder veschränktes Produkt genannt wird. Für die monoidale Kategorie der Endofunktoren einer Kategorie bekommt man ein Zappa-Szép-Produkt für Monaden, welches üblicherweise die Komposition von Monaden genannt wird. Wir beweisen zudem eine universelle Eigenschaft des Zappa-Szép-Produktes. Wir beenden den Artikel mit einer 2-kategoriellen Interpretation von Distributivgesetzen und Zappa-Szép-Produkten von Monaden.
mehr... | 37211 Bytes mehr | Kommentare? | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: Elemente von Euklid - eine brandneue Online Version mit CC BY-SA 3.0 Lizenz
Freigegeben von matroid am Sa. 25. Februar 2017 18:40:12
Verfasst von bookofproofs - (510 x gelesen)
Bildung 
Liebe Geometriefreunde und Freunde der axiomatischen Methode,

diese wurde von den Alten Griechen erfunden und das erste Meisterstück, in der sie ausgiebig angewendet wurde, waren die "Elemente" von Euklid.

Ich möchte Euch auf eine neue, englischsprachige, online-gestellte Version dieses epochalen Werkes aufmerksam machen, die sich unter

http://www.bookofproofs.org/branches/euclids-elements/

befindet. Was ich persönlich hilfreich finde, ist die Möglichkeit, dass auf jeder Seite, die einen Satz bzw. eine Definition enthält, gleichzeitig zu sehen ist, welche Sätze aus diesem Satz bzw. dieser Definition folgen (Logical Successors) bzw. welche ihr logisch vorangehen (Logical Predecessors). Auch die Liste der zugrunde liegenden Axiome ist dort zu sehen. Auf diese Weise ist es z.B. einfach, zu erkennen, ab wann im Gesamtwerk das 5. Parallelenpostulat zum ersten Mal verwendet wird, oder zu erkennen, in welchen Beweisen Begriffe wie "circle" oder "straight-line" verwendet werden.
mehr... | 2755 Bytes mehr | 7 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: Zappa-Szép-Produkte - Teil 1
Freigegeben von matroid am Di. 21. Februar 2017 21:24:56
Verfasst von Triceratops - (547 x gelesen)
Mathematik 

Zappa-Szép-Produkte

Eine Gruppe heißt semidirektes Produkt von einer Untergruppe und einem Normalteiler, wenn sich jedes Gruppenelement eindeutig als ein Produkt von einem Element der Untergruppe mit einem Element des Normalteilers schreiben lässt. Lässt man anstelle eines Normalteilers eine Untergruppe zu, gelangt man zum Begriff eines Zappa-Szép-Produktes. Genau wie semidirekte Produkte durch eine Wirkung der Untergruppe auf den Normalteiler bestimmt sind, gibt es bei Zappa-Szép-Produkten eine Art gegenseitige Wirkung der beiden Untergruppen aufeinander. Diese Wirkungen werden Distributivgesetze genannt. In diesem 1. Teil soll es um die Korrespondenz zwischen Zappa-Szép-Produkten und Distributivgesetzen gehen. Die genaue Beziehung zu semidirekten Produkten wird ebenfalls besprochen. Weil die Inversenbildung in Gruppen für die Konstruktionen irrelevant sind, werden wir uns stattdessen mit Monoiden befassen, also Mengen zusammen mit einer assoziativen Verknüpfung und einem neutralen Element. Außerdem werden wir die Axiome eines Distributivgesetzes kompakt anhand von kommutativen Diagrammen umformulieren. Das ist zugleich die Voraussetzung für den 2. Teil, in dem wir das Zappa-Szép-Produkt in einem kategorientheoretischen Rahmen einführen und damit auch eine Brücke zu Distributivgesetzen von Algebren und Monaden schlagen werden.
mehr... | 20680 Bytes mehr | 3 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


[Weitere 8 Artikel] [Eine Auswahl von 'Best-Of'-Artikeln]
 

  
Buchbesprechung

Trzeciak, Jerzy
Writing Mathematical Papers in English
Rezensiert von grosser:
Dieses Büchlein ist eine sehr schöne Hilfe beim Schreiben von mathematischen Texten auf Englisch. Besonders bemerkenswert ist der erste Teil des Buches. Hier werden für verschiedene typische Mathematikabschnitte, wie zum Beispiel "Theorem: formulation", "Proof: Arguments", "Proof ... [mehr...]
: Mathematik :: wissenschaftliches Schreiben :
Umfrage
50% eines Jahrgangs machen Abitur. Das finde ich
 
erstrebenswert
normal
unrealistisch
furchtbar
Elite lehne ich ab!
Umfragen sind blöd!
Bei uns heißt das Matura!
 
 
vorherige Umfragen
 
Stimmen: 55 | Kommentare 1
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
Sonntag, 23. April


Samstag, 01. April


Montag, 13. März


Sonntag, 26. Februar


Montag, 13. Februar


Samstag, 11. Februar


Dienstag, 24. Januar


Sonntag, 22. Januar


Freitag, 20. Januar


Mittwoch, 18. Januar


Montag, 16. Januar


Sonntag, 15. Januar


Donnerstag, 29. Dezember


Mittwoch, 28. Dezember


Sonntag, 18. Dezember


Montag, 05. Dezember


Mittwoch, 30. November


Montag, 28. November


Donnerstag, 27. Oktober


Mittwoch, 19. Oktober


Donnerstag, 13. Oktober


Montag, 03. Oktober

TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2017 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]