Die Mathe-Redaktion - 19.10.2017 07:27 - Registrieren/Login
Auswahl
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 369 Gäste und 11 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Mathematik: Zahlentheorie und Kryptologie
Freigegeben von matroid am Mi. 30. November 2016 22:34:17
Verfasst von Gerhardus - (680 x gelesen)
Mathematik 
Zahlentheorie und Kryptologie

Im Anhang als pdf-Datei eine kurze Einführung für Einsteiger mit folgendem Inhalt

1. Extremalprinzip und Primfaktorzerlegung
2. Der größte gemeinsame Teiler (ggT) und euklidische Algorithmus
   - Lösung von Gleichungen in ganzen Zahlen
3. Die Kongruenzmethode und Modularrechnung
   - modularer Kehrwert (multiplikative Inverse)
   - Kleiner Satz von Fermat und chinesischer Restsatz
   - modulare Quadratwurzeln
4. Anwendungen in der Kryptologie
   - Begriffe Protokoll und Einwegfunktion
   - Diffie-Hellman-Schlüsselaustausch
   - Public-Key-Kryptosysteme RSA und RABIN
5. Kleiner Satz von Fermat, anders bewiesen
   - Begriff zyklische Permutation (Zyklip)
   - Literaturhinweise
mehr... | 2 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Stern Mathematik: Gruppentheorie mit GAP
Freigegeben von matroid am Mo. 20. Februar 2006 12:23:27
Verfasst von Stefan_K - (7372 x gelesen)
Tools 
gap>

Gruppentheorie mit GAP

GAP ist ein Computeralgebra-System, welches sich insbesondere für gruppentheoretische Berechnungen eignet. Der Name GAP steht für Groups, Algorithms, Programming, womit der Zweck der Software bereits charakterisiert ist.

Dieser Artikel verfolgt die Absicht, GAP kurz vorzustellen und anhand einiger Beispiele dessen Nutzen anzudeuten, etwa im Finden von Inspirationen, Ersparen von mechanischem Rechnen, Lösungenentwurf und in der Ergebniskontrolle. Er soll weder Lehrbuch noch Einführung ersetzen, vielmehr werden am Artikelende Verweise auf Web-Ressourcen und Dokumentationen gegeben.

Vorausgesetzt werden Kenntnisse der Gruppentheorie, später auch etwas Wissen aus der Darstellungstheorie endlicher Gruppen.
mehr... | 31654 Bytes mehr | 2 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: Konstruktion des regelmäßigen Siebzehnecks
Freigegeben von matroid am Mi. 19. Oktober 2016 20:06:15
Verfasst von Yakob - (1215 x gelesen)
Mathematik 

Eine siebzehnstrahlige "Sonne"


Überlegungen zur Vereinfachung der Konstruktion des regulären 17-Ecks


Das Wappen der durch Gemeindefusion im Jahr 2011 entstandenen Gemeinde "Glarus Süd" zeigt eine siebzehnstrahlige gelbe Sonne auf blauem Grund:




Das ist unter den Wappensymbolen eine absolute Rarität. In der Heraldik kommen zum Beispiel Sonnen mit 8, 12, 16 oder 32 Strahlen vor. Sie haben den (wenigstens für frühere Wappendesigner wichtigen) Vorteil, dass man die entsprechenden regelmäßigen Vielecke mit den klassischen Methoden der Geometrie, also mittels Zirkel und Lineal, exakt konstruieren kann. Eine Ausnahme ist da etwa die 28-strahlige Sonne im Wappen von Wiesbaden-Sonnenberg. Das reguläre 28-Eck ist nicht ZL-konstruierbar, weil dies schon für das reguläre Siebeneck nicht der Fall ist.
Für die meisten Laien ziemlich unbegreiflich ist deshalb, dass die Konstruktion des regelmäßigen 17-Ecks trotzdem möglich sein soll.

Für den vorliegenden Artikel habe ich, ausgehend von den früher bekannten, recht komplizierten und unübersichtlichen Konstruktionen, eine wesentlich einfachere und kurze Darstellung entwickelt.
mehr... | 9046 Bytes mehr | 15 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: Moduln sind möglicherweise frei
Freigegeben von matroid am Do. 13. Oktober 2016 13:11:01
Verfasst von Triceratops - (796 x gelesen)
Mathematik 

Moduln sind möglicherweise frei

Aus der linearen Algebra kennen wir den Beweis, dass ein endlich-erzeugter Vektorraum eine Basis hat. Man nimmt sich ein Erzeugendensystem und streicht solange "überflüssige" Vektoren, bis ein minimales Erzeugendensystem und damit eine Basis vorliegt. In diesem Artikel schauen wir uns die dabei verwendeten logischen Grundlagen an. Aus der Analyse extrahieren wir einen interessanten Satz aus der kommutativen Algebra, der in etwa aussagt, dass gewisse Moduln möglicherweise frei sind.
mehr... | 19865 Bytes mehr | 3 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: SEAR: Mengen, Elemente und Relationen
Freigegeben von matroid am Do. 22. September 2016 15:52:18
Verfasst von Triceratops - (1405 x gelesen)
Mathematik 

SEAR: Mengen, Elemente und Relationen

Eine strukturelle Mengenlehre


Die Mathematik wird üblicherweise mithilfe der Mengenlehre fundiert, und die Mengenlehre wird üblicherweise als die Theorie des Axiomensystems <math>\mathsf{ZF}</math> von Zermelo und Fraenkel bzw. seiner Varianten angesehen. Es gibt allerdings noch andere Axiomensysteme, welche zu einer äquivalenten Mengenlehre führen. Ich stelle in diesem Artikel eines dieser Axiomensysteme vor. Es heißt <math>\mathsf{SEAR}</math>, was eine Abkürzung für sets, elements and relations ist. Es wurde vor einigen Jahren von Michael Shulman entwickelt und bisher nur im nLab veröffentlicht. Das Axiomensystem verdient aber eine größere Aufmerksamkeit, weil es im Gegensatz zu <math>\mathsf{ZF}</math> eine typisierte und strukturelle Mengenlehre ist.
mehr... | 55160 Bytes mehr | 15 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Vom Mendelsohn-Modell zum Gompertz- und logistischen Wachstumsgesetz
Freigegeben von matroid am Do. 21. Juli 2016 21:19:44
Verfasst von Marbin - (702 x gelesen)
Mathematik 
<math>$${\Large \textbf{Vom Mendelsohn-Modell zum Gompertz- und logistischen Wachstumsgesetz}}</math>

Die Gompertz- sowie die logistische Funktion sind in der Onkologie eine populäre Methode, die empirischen Wachstumskurven von avaskulären und vaskulären Tumoren im Frühstadium zu modellieren. Diese phänomenologischen Modelle sind jedoch ausschließlich beschreibender Art, eine biologische Rechtfertigung fehlt. Motivation dieses Artikels ist es nun, eine mögliche biologische Begründung der Gompertz- und logistischen Funktion bei Anwendung auf Tumorwachstumsmodellierung zu liefern.
mehr... | 908 Bytes mehr | 7 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen


Mathematik: Der große Bruder des Harborth-Graphen
Freigegeben von matroid am So. 17. Juli 2016 17:57:58
Verfasst von Slash - (460 x gelesen)
Mathematik 

Der große Bruder des Harborth-Graphen

In diesem Artikel stelle ich einen neuen 4-regulären Streichholzgraphen mit 108 Kanten vor. Dieser Graph - siehe rechts - wurde von StefanVogel, haribo und mir als Team im Verlauf unseres Streichholzgraphen-Threads hier auf dem Matheplaneten entdeckt und auch erstmals präsentiert. Er ist nach dem sehr ähnlich aussehenden Harborth-Graphen mit 104 Kanten das neue zweitkleinste bekannte Beispiel eines 4-regulären Streichholzgraphen, und löst damit den erst kürzlich hier präsentierten Graphen mit 114 Kanten ab. Wie sich der neue Graph in wenigen Schritten aus dem Harborth-Graphen konstruieren lässt, und dass beide Graphen wirklich existieren, soll hier gezeigt werden.
mehr... | 20080 Bytes mehr | Kommentare? | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: Beweglichkeit eines Streichholzgraphen bestimmen
Freigegeben von matroid am Sa. 09. Juli 2016 13:06:44
Verfasst von StefanVogel - (364 x gelesen)
Mathematik 
Beweglichkeit eines Streichholzgraphen bestimmen

<math>\begin{array}{r} \textit{1,58} \\ \textit{-0,15} \\ \textit{-0,34} \\ \textit{\underline{-0,73}}\\ \textit{0,36} \end{array}</math>
3 plus 4 ist 7, plus 5 ist 12, 8 minus 12 geht nicht, also 1 borgen, 18-12 ist 6. So haben meine Großeltern immer den Einkauf vorgerechnet, extra ausführlich, damit ich etwas lerne dabei. Es war auch ein besonderer Moment, wenn dann die geborgte 1 in der Zehnerspalte eingetragen und dort im nächsten Durchlauf mit dazugezählt wurde. Also wenn es nicht weitergeht, 1 borgen und dazuzählen.



Mit dieser Methode möchte ich nun ein Gleichungssystem lösen und darauf aufbauend die Beweglichkeit eines Streichholzgraphen bestimmen. Verwendet werden die Begriffe inverse, reguläre, singuläre, transponierte Matrix, Lösungsmenge von homogenen und inhomogenen Gleichungssystemen, Basis, linear abhängige Zeilen und Spalten, Determinante sowie aus der Mechanik der Begriff Freiheitsgrad.

mehr... | 71387 Bytes mehr | Kommentare? | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


Mathematik: Verbesserung von Eingebetteten Runge-Kutta-Verfahren
Freigegeben von matroid am So. 03. Juli 2016 20:56:22
Verfasst von Higlav - (956 x gelesen)
Mathematik 


Vorwort

Im Rahmen einer kleineren Projektarbeit zur Verbesserung meines Notenschnittes in meinem Numerik-Modul entwickelte ich eher am Rande und per Zufall eine Schrittweitensteuerung für eingebettete Runge-Kutta-Verfahren, welche eine gewisse Verbesserung zum klassischen Algorithmus bietet. In diesem Artikel werde ich diese Optimierung vorstellen.
Vielleicht ist "Verbesserung" etwas unglücklich gewählt. Bei Bedarf ändere ich es auch auf "Modifikation".



Navigation

  1. Einführung
  2. Grundlagen
    1. Schrittweitensteuerung
    2. Eingebettete Verfahren
  3. Die verbesserte Schrittweitenabschätzung
  4. Programmierung
  5. Vergleich zum herkömmlichen Algorithmus
  6. Fazit


mehr... | 61855 Bytes mehr | 6 Kommentare | Druckbare Version  Einen Freund auf diesen Artikel hinweisen | Mathematik


[Weitere 8 Artikel] [Neueste Artikel] [Eine Auswahl von 'Best-Of'-Artikeln]
 

  
Buchbesprechung

Wurzel e.V. (Herausgeber)
Unsere Mathematikaufgabe – Begleitschrift zur 55. Bundesrunde der Mathematik-Olympiade

Rezensiert von cyrix:
Vom 12. bis 15. Juni 2016 richtete der Wurzel e. V. mit verschiedenen Partnern die Bundesrunde der 55. Mathematik-Olympiade in Jena aus. Dabei konnte den knapp 200 Wettbewerbsteilnehmern sowie den ca. 200 Korrektoren, Koordinatoren, der Wettbewerbsleitung, den Helfern und Organi ... [mehr...]
: Wettbewerbsaufgaben :
Umfrage
50% eines Jahrgangs machen Abitur. Das finde ich
 
erstrebenswert
normal
unrealistisch
furchtbar
Elite lehne ich ab!
Umfragen sind blöd!
Bei uns heißt das Matura!
 
 
vorherige Umfragen
 
Stimmen: 536 | Kommentare 13
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
Sonntag, 08. Oktober


Montag, 01. Mai


Sonntag, 23. April


Sonntag, 09. April


Montag, 03. April


Samstag, 01. April


Montag, 13. März


Sonntag, 26. Februar


Montag, 13. Februar


Donnerstag, 29. Dezember


Mittwoch, 28. Dezember


Sonntag, 18. Dezember


Montag, 05. Dezember


Montag, 28. November


Donnerstag, 27. Oktober


Montag, 03. Oktober


Mittwoch, 31. August


Samstag, 13. August


Montag, 18. Juli


Sonntag, 26. Juni


Sonntag, 19. Juni


Dienstag, 14. Juni

TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2017 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]