Die Mathe-Redaktion - 15.12.2017 17:06 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
ListenpunktSchwätz / Top 15
ListenpunktWerde Mathe-Millionär!
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden oder den Newsletter bestellen.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 608 Gäste und 29 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von viertel
Mathematik » Geometrie » Schnitt von einem Kreis mit einer Ebene
Druckversion
Druckversion
Autor
Universität/Hochschule J Schnitt von einem Kreis mit einer Ebene
MadFlo
Neu Letzter Besuch: im letzten Monat
Dabei seit: 20.11.2017
Mitteilungen: 2
Aus:
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2017-11-20 11:45


Hallo alle zusammen,
ich habe folgendes Problem: ich habe eine große Anzahl von ausgefüllten Kreise. Diese sind definiert über ihren Mittelpunkt (x,y,z), ihrem Radius (r) und ihren Normalenvektor (nx, ny, nz). Nun möchte ich die „Schnittgerade mit einer x-y Ebene berechnen, also quasi den Strich der entsteht wenn ein Kreis diese Ebene schneidet. Kann mir jemand damit helfen? Ich habe ehrlich gesagt noch keine Ahnung was dafür der beste Ansatz währe

EDIT: Also momentan verfolge ich den Weg, die Schnittgerade zwischen der x-y Ebene und der Kreis Ebene zu berechnen. Dann berechne ich den Abstand zwischen Kreis Mittelpunkt und der x-y Ebene entlang der Kreis Ebene, um damit dann die Breite vom Kreis mit diesem Abstand vom Mittelpunkt zu berechnen (ich hoffe das ergibt Sinn). Damit kann ich dann natürlich ganz einfach die Länge von der Linie berechnen und die Position weiß ich ja bereits. Meine Frage an dieser Stelle ist, ob es denn eine bessere/schnellere Methode gibt, da ich dies in eine Simulation hinzufüge und das ganze dann sehr oft berechnet werden muss



  Profil  Quote  Link auf diesen Beitrag Link
werner
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.10.2004
Mitteilungen: 2070
Aus: österreich
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2017-11-20 17:31


ich würde das Problem über die Parameterform der Kreises knacken, das ergibt eine quadratische Gleichng für den Schnittwinkel Kreis - Ebene, woraus die beiden Schnittpunkte folgen, so es sie gibt smile



  Profil  Quote  Link auf diesen Beitrag Link
StrgAltEntf
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 19.01.2013
Mitteilungen: 3712
Aus: Milchstraße
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, eingetragen 2017-11-20 20:36


2017-11-20 11:45 - MadFlo im Themenstart schreibt:
Dann berechne ich den Abstand zwischen Kreis Mittelpunkt und der x-y Ebene entlang der Kreis Ebene, um damit dann die Breite vom Kreis mit diesem Abstand vom Mittelpunkt zu berechnen (ich hoffe das ergibt Sinn).

Das habe ich nicht ganz verstanden. Aber vielleicht meinst du folgendes:

Berechne für einen Punkt der Schnittgeraden den Abstand zum Kreismittelpunkt. Setze diesen gleich r. Dies ergibt die beiden Endpunkte der Schnittstrecke. Auch hier ist eine quadratische Gleichung zu lösen.



  Profil  Quote  Link auf diesen Beitrag Link
werner
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.10.2004
Mitteilungen: 2070
Aus: österreich
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2017-11-20 23:34


2017-11-20 20:36 - StrgAltEntf in Beitrag No. 2 schreibt:
2017-11-20 11:45 - MadFlo im Themenstart schreibt:
Dann berechne ich den Abstand zwischen Kreis Mittelpunkt und der x-y Ebene entlang der Kreis Ebene, um damit dann die Breite vom Kreis mit diesem Abstand vom Mittelpunkt zu berechnen (ich hoffe das ergibt Sinn).

Das habe ich nicht ganz verstanden. Aber vielleicht meinst du folgendes:

Berechne für einen Punkt der Schnittgeraden den Abstand zum Kreismittelpunkt. Setze diesen gleich r. Dies ergibt die beiden Endpunkte der Schnittstrecke. Auch hier ist eine quadratische Gleichung zu lösen.

geht vermutlich viel einfacher als bei mir smile



  Profil  Quote  Link auf diesen Beitrag Link
MadFlo
Neu Letzter Besuch: im letzten Monat
Dabei seit: 20.11.2017
Mitteilungen: 2
Aus:
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, vom Themenstarter, eingetragen 2017-11-21 08:31


2017-11-20 20:36 - StrgAltEntf in Beitrag No. 2 schreibt:
2017-11-20 11:45 - MadFlo im Themenstart schreibt:
Dann berechne ich den Abstand zwischen Kreis Mittelpunkt und der x-y Ebene entlang der Kreis Ebene, um damit dann die Breite vom Kreis mit diesem Abstand vom Mittelpunkt zu berechnen (ich hoffe das ergibt Sinn).

Das habe ich nicht ganz verstanden. Aber vielleicht meinst du folgendes:

Berechne für einen Punkt der Schnittgeraden den Abstand zum Kreismittelpunkt. Setze diesen gleich r. Dies ergibt die beiden Endpunkte der Schnittstrecke. Auch hier ist eine quadratische Gleichung zu lösen.

Ja, hmm, manchmal stellt man sich blöder an als nötig. Ich habe tatzächlich was anderes gemeint, wie du es schreibst ist es dann natürlich deutlich einfacher. Letztendlich kann ich sogar soetwas machen wie Werner gemeint hat, und einfach die Schnittpunkte vom Kreis mit der Ebene berechnen. Wenn ich die verbinde habe ich dann auch meine Linie.

Ich behaupte jetzt mal das Thema ist jetzt erledigt, muss nur noch etwas rumrechnen. Danke euch beiden!



  Profil  Quote  Link auf diesen Beitrag Link
MadFlo hat die Antworten auf ihre/seine Frage gesehen.
MadFlo hat selbst das Ok-Häkchen gesetzt.
MadFlo wird per Mail über neue Antworten informiert.
Neues Thema [Neues Thema]  Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2017 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]