Mathematik: Quaternionen und Möbiustransformationen
Released by matroid on Fr. 27. Januar 2023 19:43:49
Written by Gestath - (130 x read)
Analysis 

Quaternionen und Möbiustransformationen

Sei H die Menge der Quaternionen und S^2=menge(x \el\ H, abs(x)=1, x=-x^-) die Menge der reinen Quaternionen mit Betrag 1. Bewiesen wird der folgende Satz: Eine Möbiustransformation f: S^2->S^2 hat die Gestalt: f(x)=(ax-b)(bx+a)^(-1), a,b \el\ H, a<>0 oder b<>0 , b^(-1)*a \notel\ S^2 Abschließend wird noch eine koordinatenfreie Definition von reellen Unterräumen in einem komplexen projektiven Raum angerissen.
mehr... | 11761 Bytes mehr | Kommentare? | Druckbare Version 


Mathematik: Verleihung der 21. Matheplanet-Mitglieder-Awards
Released by matroid on So. 22. Januar 2023 15:00:00
Written by matroid - (723 x read)
Matheplanet-Award 
Verleihung
der 21. Matheplanet-Mitglieder-Awards

22. Januar 2023
mehr... | 98709 Bytes mehr | 21 Kommentare | Druckbare Version 


Mathematik: Kartenbauten
Released by matroid on Mo. 02. Januar 2023 22:15:25
Written by Delastelle - (208 x read)
Spiele+Rätsel Schon ein einfaches Skatspiel mit 32 Karten genügt um etwas zu Bauen. Ich kenne 3 Typen von Bauten. Hier werden sie vorgestellt.
mehr... | 1503 Bytes mehr | 2 Kommentare | Druckbare Version 


Mathematik: Zerfällungsalgebren
Released by matroid on Di. 20. Dezember 2022 15:47:56
Written by Triceratops - (228 x read)
Mathematik 

Zerfällungsalgebren

In Algebra-Vorlesungen lernt man den Zerfällungskörper eines Polynoms über einem Körper kennen. Tatsächlich ist dieser Körper nicht eindeutig bestimmt, nur bis auf nicht-eindeutige Isomorphie, und besitzt keine konstruktive Konstruktion. Zerfällungsringe bzw. Zerfällungsalgebren beheben dieses Problem. Sie lassen sich sehr elegant über eine universelle Eigenschaft kennzeichnen, sind also bis auf eindeutige Isomorphie eindeutig bestimmt, und ihre Existenz lässt sich leicht und konstruktiv beweisen. Zerfällungskörper kann man wiederum als geeignete Quotienten davon gewinnen. Die Grundidee ist, dass man für normierte Polynome $f \in R[X]$, wobei hier nun $R$ ein beliebiger kommutativer Ring sein kann, eine in einem gewissen Sinne kleinste Ringerweiterung $R \subseteq S$ sucht, sodass $f$ in $S[X]$ vollständig in Linearfaktoren zerfällt. Zerfällungsalgebren sind nicht so bekannt wie sie sein sollten, und ihre Behandlung in diesem Artikel unterscheidet sich insofern von der relativ spärlichen Literatur, dass wir eine allgemeine Quotientenkonstruktion für Algebren verwenden und konsequent universelle Eigenschaften verwenden, um mit wenig Rechnung zu denselben Resultaten zu kommen. Abgesehen von der Existenz von Zerfällungskörpern besprechen wir noch zwei weitere Anwendungen, nämlich dass ganze Elemente unter Ringoperationen abgeschlossen sind sowie die Existenz eines ringtheoretischen algebraischen Abschlusses.
mehr... | 30215 Bytes mehr | Kommentare? | Druckbare Version 


Mathematik: Wie Differentialformen alles schöner und einfacher machen
Released by matroid on So. 27. November 2022 13:20:12
Written by nzimme10 - (1098 x read)
Analysis 

Wie Differentialformen alles schöner und einfacher machen

Wir schreiben das Jahr 2022. Man findet im Internet einen alten Artikel des Mathematikers Jean Dieudonné und liest von einer "Perversion der schönsten Ideen von Graßmann". Tristan Needham spricht in seinem exzellenten Buch "Visual Differential Geometry and Forms" von einem jahrhundertlangen "Skandal" ohne Aussicht auf Besserung. Was wohl passiert sein mag? Konkret geht es sowohl Dieudonné als auch Needham um die Vektoranalysis im $\mathbb R^3$. Der "Skandal" dabei ist, dass es spätestens seit dem Jahre 1940 eine schönere, wesentlich allgemeinere und oftmals sehr viel einfachere Theorie gibt: die Differentialgeometrie mit Élie Cartan's Differentialformen. Dennoch arbeiten viele (vor allem) Physiker auch heute noch regelmäßig mit der "Perversion, die die Vektoranalysis ist". Der noch verrücktere "Skandal" ist, dass viele Physikstudenten und auch Mathematikstudenten im Laufe ihres Studiums manchmal gar keinen und oft nur sehr wenig Kontakt mit Differentialformen haben. (Zumindest ist das die Erfahrung, die ich regelmäßig mache.) Dieser Artikel möchte einen Beitrag dazu leisten, das zu ändern. Wir betrachten die schöne und einfache Theorie der Differentialformen auf dem $\mathbb R^n$ und zeigen, warum diese Theorie alles schöner und einfacher macht. Zum Abschluss demonstrieren wir diese Behauptung auch an den Maxwell-Gleichungen der Elektrodynamik. Dieser Artikel richtet sich in erster Linie an Physikstudenten.
mehr... | 82221 Bytes mehr | 15 Kommentare | Druckbare Version 


Mathematik: Tensoren und Tensorfelder in der Differentialgeometrie
Released by matroid on Fr. 11. November 2022 09:17:20
Written by nzimme10 - (610 x read)
Analysis 

Tensoren und Tensorfelder in der Differentialgeometrie

Ein Tensor ist ein Objekt, das wie ein Tensor transformiert. In etwa das ist die Definition in manchen Physikbüchern oder einführenden Vorlesungen. Diese "Definition" eignet sich zwar um Berechnungen durchführen zu können, aber wirklich verstehen kann man sie (zumindest am Anfang) nicht. Wenn man sich mit der Differentialgeometrie beschäftigt stellt man schnell fest, dass man in der Regel kein globales kanonisches Koordinatensystem mehr hat. Auf Mannigfaltigkeiten können daher nur Konzepte definiert werden, die unabhängig von den gewählten (lokalen) Koordinaten sind, die also intrinsisch definiert sind. Viele der Konzepte der Differentialgeometrie sind dafür gemacht, die Mittel der linearen und multilinearen Algebra darauf anzuwenden. Tensoren und Tensorfelder, das wird sich zeigen, sind dann genau die mathematischen Objekte, die diese koordinatenunabhängige Beschreibung verschiedener Eigenschaften möglich machen. Dieser Artikel möchte einen Beitrag zum Verständnis dieser Konzepte aus Sicht der Differentialgeometrie leisten.
mehr... | 46048 Bytes mehr | 4 Kommentare | Druckbare Version 


Mathematik: Über injektive, surjektive und bijektive Abbildungen
Released by matroid on Di. 08. November 2022 15:16:45
Written by Triceratops - (578 x read)
Mathematik 

Über injektive, surjektive und bijektive Abbildungen

Injektive, surjektive und bijektive Abbildungen sind wichtige Klassen von Abbildungen. Sie werden in diesem Artikel mit der Lösbarkeit von Gleichungen einfach erklärt und mit Hilfe von Bild und Kern charakterisiert. Zum besseren Verständnis werden außerdem sehr viele Beispiele vorgestellt (30 Stück). Anschließend geben wir auch einige Charakterisierungen an, die mit Kürzungs- und Liftungseigenschaften arbeiten. Mit ihnen wird deutlich, dass Injektivität und Surjektivität zueinander "duale" Konzepte sind. Der Artikel richtet sich an Studienanfänger.
mehr... | 38910 Bytes mehr | 11 Kommentare | Druckbare Version 


Mathematik: Ist die Hesse-Matrix die zweite Ableitung?
Released by matroid on Do. 03. November 2022 13:01:26
Written by nzimme10 - (486 x read)
Analysis 

Ist die Hesse-Matrix die zweite Ableitung?

Neulich im Schwätz hat ein Nutzer die Frage gestellt, ob man ihm helfen könne zu zeigen, dass die 2. Ableitung die Hesse-Matrix ist. Zunächst war ich von der Frage etwas verwundert, habe dann aber geglaubt zu verstehen, was das Anliegen ist und nach einigen Stunden hin und her war der Stand der Dinge, dass das, was ich vorgeschlagen hatte, zu kompliziert wäre und "mit Matrizen alles viel logischer" wäre. Persönlich kann ich nur spekulieren, dass der Wunsch alles mit Matrizen darzustellen nur von fehlendem Verständnis kommen kann. Für konkrete Rechnungen mag das schön sein, aber ich halte es für das konzeptionelle Verständnis nicht nur für unnötig, sondern vor allem für hinderlich. In diesem Artikel möchte ich daher einige Auszüge der mehrdimensionalen Differentialrechnung etwas anders darstellen, als das sonst in den gängigen Lehrbüchern und Lehrveranstaltungen für Studienanfänger getan wird. Natürlich kommen wir auf die Frage zurück, die dem Artikel seinen Namen gegeben hat.
mehr... | 19058 Bytes mehr | 3 Kommentare | Druckbare Version 


[Weitere 8 Artikel]
 

  
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2023 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]