Notizbuch der Arbeitsgruppe Alexandria
Logo der Arbeitsgruppe AlexandriaAlexandriaRUHT
Arbeitsgruppe Alexandria auf dem Matheplaneten
Schaffung und fortlaufende Pflege des Stichwortkatalogs für die Artikel auf dem Matheplaneten.

Kontakt:
matroid
  Alle Register zeigen, die initial gezeigt werden sollen  5 22 55 127 52 88 27 9 88 18 43 24 9 430 114 90  Zum eigenen Notizbuch    [RegView] [Hilfe] Notizsymbol Notizsymbol Nur Einträge mit Dateianlage zeigen, aus allen meinen Registern Öffentliche Register aller Notizbücher Übersicht aller Arbeitsgruppen  Zum eigenen Notizbuch Briefsymbol
  Suchen im Notizbuch
Aufsteigend nach laufender Nummer01Absteigend nach laufender Nummer  Aufsteigend nach NamenAZAbsteigend nach Namen  Aufsteigend nach Datum der NotizDDAbsteigend nach Datum der Notiz
Einträge zum Stichwort: Kategorientheorie

Wie man zwischen zwei Kategorien eine Brücke bautAdjunktionen In der reinen Mathematik sind universelle Eigenschaften allgegenwärtig. Sobald universelle Objekte über einer Kategorie "parametrisiert" werden können, entsteht eine Adjunktion: Zum Beispiel kann man jeder Menge X die freie Gruppe F(X) m

Dieser Artikel setzt Zaos' Einführung in die Kategorientheorie fort. Es werden die Begriffe Monomorphismus, Epimorphismus und Isomorphismus in beliebigen Kategorien eingeführt. Sie verallgemeinern die Begriffe Injektion, Surjektion und  Bijektion.
Im Laufe eines Mathematikstudiums begegnen einem Studenten viele, zum Teil verschiedenartige Strukturen: Gruppen, Körper und Vektorräume in der Linearen Algebra, Stetigkeit und Konvergenz (in metrischen Räumen), differenzierbare Strukturen (in normierten Vektorräumen) in der Analysis. Später begegne
Liebe Planetarier, Dieser Artikel ist einerseits als Fortsetzung des Artikels Kategorientheorie, in dem ich eine Einführung in die Sprache der Kategorien gab, gedacht. Andererseits will Ich ich eine Einführung in die Technik von Diagrammen und Sequenzen geben. Letztere sind sehr mächtige und effi ...
Diese Ausarbeitung beschäftigt sich mit einer Theorie der Strukturen. Die Mathematik hat bereits sehr viele Strukturen hervorgebracht, die sich von Gruppen, über Körper bis zu Vektorräumen erstrecken, um nur einige wenige Bekannte zu nennen. Allerdings werden die Strukturen immer komplexer und umfangreicher, mit verschiedensten Spezifikationen, um den Ansprüchen gerecht zu werden, die an sie gestellt werden. Die vereinheitlichte Theorie, die uns eine abstrakte Behandlung aller mathematischen Strukturen erlauben soll, ist die Kategorientheorie, mit der wir uns in diesem Artikel beschäftigen wollten.
Fortsetzung des Artikels über universelle Eigenschaften. Es wird eine Fülle von Beispielen vorgeführt.
Verallgemeinerung des Dualitätssatzes von Gelfand-Naimark auf kommutative C*-Algebren ohne 1. Diese sind zu lokalkompaktem Räumen dual. Ein Beweis dieser Dualität und einiger seiner Konsequenzen finet sich hier.
Ein Artikel über universelle Eigenschaften, Morphismen und Objekte in der Kategorientheorie.

--- 8 Einträge Druckansicht der Liste ---

Heute, Gestern, vor 2 oder 3 Tagen geändert

 

 

 

 

Notizbuch der Arbeitsgruppe Alexandria



[Zum Seitenanfang]
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]