Informatik: Lösen eines Rundreiseproblems(TSP) durch 96 Städte mittels Ameisenalgorithmus
Released by matroid on Fr. 15. März 2019 12:05:24
Written by Delastelle - (345 x read)
Informatik  \(\begingroup\)
Im Artikel werden mehrere Näherungslösungen zu einem symmetrischen Rundreiseproblem (TSP)
durch 96 französische Städte ("Tour de France" oder TSP96) mittels eines Ameisenalgorithmus berechnet.
In meinem Notizbuch habe ich die entsprechenden Grafiken und Programme seit 2011 liegen. \(\endgroup\)
mehr... | 11207 Bytes mehr | 5 Kommentare | Druckbare Version  | Informatik


Stern Mathematik: Über Darstellende Matrizen
Released by matroid on Di. 18. Februar 2003 22:25:50
Written by Siah - (527070 x read)
Lineare Algebra  \(\begingroup\)

Lineare Algebra für Dumme, Kap. 2
 
Kapitel 2: Darstellungsmatrizen linearer Abbildungen zwischen endlich-dimensionalenVektorräumen bezüglich verschiedener Basen
 

Hallo zusammen,

ich möchte mich in diesem kleinen Abschnitt mit einem wohl oft zu unrecht als "kompliziert" verschrieenen Thema der linearen Algebra befassen. Wie schon aus der Überschrift zu erkennen, soll es um die verschiedenen Darstellungsformen linearer Abbildungen (Homomorphismen, strukturerhaltende Abbildungen) zwischen Vektorräumen gehen.

Da ich pädagogisch leider in keiner Weise geschult bin, bitte ich im Voraus um Entschuldigung für ungewollte, beziehungsweise didaktisch nicht wertvolle gedankliche Sprünge, Unzulänglichkeiten bei Erklärungen und Wortarmut (ich bin auch leider rhetorisch nicht geschult). Gleichzeitig bitte ich von allen Seiten um Verbesserungsvorschläge inhaltlicher, äußerer Art, und um Fehlerbeseitigung.

 

Inhalt

- Lineare Abbildungen
- Homomorphismen
- Bild und Kern
- Dimensionsformel
- Injektivität und Surjektivität
- Wo bleiben die Matrizen?
- Lineare Abbildung am Beispiel
- Darstellung linearer Abbildungen am Beispiel
- Darstellungsmatrizen linearer Abbildungen bezüglich verschiedener Basen
- Abbilden mit einer Darstellenden Matrix
- Berechnung der Darstellenden Matrix am Beispiel
- 5-Schritt-Verfahren zum Rechnen mit Darstellungsmatrizen
- Zu komplizert?
- Basisänderung
- Rang einer linearen Abbildung
Trennlinie

Ich setze voraus, mit folgenden Begriffen umgehen zu können:

Vektorraum, Erzeugendensystem, Basis, Dimension, Abbildung, Matrix, Matrizenmultiplikation, Gauss-Algorithmus.
\(\endgroup\)
mehr... | 28676 Bytes mehr | 57 Kommentare | Druckbare Version  | Mathematik


buhs Montagsreport: Übungen zur Logik 10*
Released by matroid on Mo. 25. Februar 2019 00:00:22
Written by buh - (584 x read)
Bildung  \(\begingroup\)
Urlogo für buhs Montagsreport
Übungen zur Logik 10*

Schlauer werden ohne Chef


Berlin. Nach langer Pause muss ich mal wieder ein Logik-Rätsel offenbaren. Allerdings fürchte ich, dass es für die Masse der Hochqualifizierten, die hier immer nur über mathematische(r) Logik* logieren, reichlich leicht sein wird, weswegen ich es auch fachgerecht aufbereitet habe.
Gemäß vorherrschenden Konventionen zur SATZ-Struktur beginnen wir mit den Voraussetzungen:

\(\endgroup\)
mehr... | 3736 Bytes mehr | 7 Kommentare | Druckbare Version  | buhs Montagsreport


Mathematik: Über die elementaren Wachstumsmodelle
Released by matroid on Mo. 18. Februar 2019 19:11:22
Written by Diophant - (1172 x read)
Mathematik  \(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}} \newcommand{\on}{\operatorname}\)

1. Einleitung


Dieser Artikel richtet sich hauptsächlich an Schülerinnen und Schüler im Rahmen der Vorbereitung auf das Abitur. Es wird aus diesem Grunde versucht, die vorgetragenen Sachverhalte möglichst anschaulich darzustellen, auf akademische Strenge wird aus dem gleichen Grund verzichtet.

Die Beschäftigung mit Wachstums- bzw. Zerfallsvorgängen stellt einen der am häufigsten gewählten Anwendungsbereiche der Analysis für Prüfungsaufgaben im Rahmen deutscher Abiturprüfungen dar.

Bei der Bearbeitung von Aufgaben zu diesem Thema haben wir es in erster Linie mit zwei Problemen zu tun. Zum einen fällt das Erkennen der Art des Wachstums- bzw. des Zerfallsprozesses aus der Beschreibung eines Vorgangs heraus oftmals schwer, zum anderen ist auch der Zusammenhang zwischen Wachstumsvorgang und der entsprechenden Funktionsgleichung weit weniger ersichtlich als beispielsweise bei der Anwendung der Parabelgleichung für den schiefen Wurf oder der Sinus- bzw. der Kosinusfunktion zur Beschreibung harmonischer Schwingungsvorgänge. Dies gilt insbesondere für das beschränkte und in noch stärkerem Maße für das logistische Wachstum. Um hier Abhilfe zu schaffen, rückt ein Instrument der Analysis in den Blickpunkt, welches im Rahmen der Schulmathematik erfahrungsgemäß viel zu kurz kommt: die Differentialgleichung.

In diesem Artikel sollen vier elementare Wachstumsmodelle vorgestellt werden:

  • Lineares Wachstum
  • Exponentielles Wachstum
  • Beschränktes Wachstum
  • Logistisches Wachstum
\(\endgroup\)
mehr... | 32082 Bytes mehr | 5 Kommentare | Druckbare Version  | Mathematik


Matheplanet-Award: Verleihung der 17. Matheplanet-Mitglieder-Awards
Released by matroid on So. 27. Januar 2019 15:00:01
Written by matroid - (1439 x read)
Matheplanet-Award  \(\begingroup\)\(\newcommand{\IX}{\mathbb{X}} \newcommand{\IW}{\mathbb{M}} \)
Verleihung
der 17. Matheplanet-Mitglieder-Awards

27. Januar 2019
\(\endgroup\)
mehr... | 113998 Bytes mehr | 21 Kommentare | Druckbare Version  | Matheplanet-Award


Physik: MontyPythagoras Wunderbare Welt Der Schwerkraft
Released by matroid on Sa. 19. Januar 2019 23:47:20
Written by MontyPythagoras - (623 x read)
Physik  \(\begingroup\)
And now for something completely differential

S


chwerkraft ist wohl die erste Kraft, mit der jeder Mensch in seinem Leben Erfahrungen macht. Meistens negative, nämlich bei seinen ersten Versuchen, ihr zu trotzen und aufrecht zu gehen, wie es sich für einen Homo sapiens gehört. Trotzdem hat es sehr lange gebraucht, bis die dahinter stehenden, mathematischen Gesetzmäßigkeiten erkannt wurden, und zwar durch den oben etwas gestresst wirkenden Sir Isaac Neutonne in seiner berühmten, 1687 erschienenen Schrift Philosophiae Naturalis Principia Mathematica. Übrigens nicht in der heute gebräuchlichen, expliziten Formel, die entstand erst fast 200 Jahre später. Ein Apfel soll bei der Entdeckung auch eine entscheidende Rolle gespielt haben, aber das ist wohl nur Mythos.
Während wohl jeder wissenschaftsaffine Mensch die berühmte Formel kennt (vielleicht die zweitberühmteste nach $E=mc^2$), möchte ich in diesem Artikel aus meiner Reihe "Physikalisches Wissen, das keiner braucht" einige sich daraus ergebende Schlussfolgerungen zum Besten geben, die offenkundig weniger bekannt sind.
Gleichzeitig ist der Artikel auch zu einer kleinen Hommage an die berühmte und für mich namensstiftende Komikertruppe geworden. \(\endgroup\)
mehr... | 28750 Bytes mehr | 5 Kommentare | Druckbare Version  | Physik


Mathematik: Der Preis der Freiheit
Released by matroid on Sa. 06. Oktober 2018 09:22:28
Written by AnnaKath - (746 x read)
Vermischtes  \(\begingroup\)

Der Preis der Freiheit

- Selfish Routing -

Dieser Artikel beschäftigt sich in seinem (überschaubaren) mathematischen Kern mit einem kleinen Satz, der die Ineffizienz eines so genannten "selfish routing algorithm" beschränkt. Es ist aber auch ein Ziel, diese Aussage etwas weiter zu interpretieren und darzulegen, wie man von ganz anderen Fragestellungen motiviert, auf dieses Resultat stoßen kann.

Dies ist eines der Dinge, die ich an der Mathematik so mag; durch die hohe Abstraktion und präzise Fassung von Begriffen tun sich gelegentlich ungeahnte Anwendungen auf. Auch dies soll der Artikel exemplarisch veranschaulichen. Natürlich mag auch die rein mathematische Aussage interessant sein und wer sich nur dafür interessiert möge die weiteren Ausführungen ignorieren. Um dies zu erleichtern sind die zu überschlagenden Textteile durch einen $\bigstar$ markiert und sogar durch $\bigstar\bigstar$, wenn es sich um eine rein persönliche Bemerkungen handelt.

Zum Titel: Der übliche englische Begriff für das zu Behandelnde lautet "price of anarchy". Auch eine direkte Übersetzung gäbe durchaus wieder, worum es dabei geht, entspricht aber nicht der (persönlichen) Motivation.

Und eine letzte Anmerkung vorweg: Ich schreibe diesen Artikel aus Sicht einer Volkswirtschaftlerin. Diese Disziplin nannte man früher "politische Ökonomie" und so lässt es sich nicht vermeiden, dass man die ein oder andere Aussage eben "politisch" deuten kann.
Dies ist ausdrücklich nicht meine Absicht und wäre eine vorsätzliche Missinterpretation. Leser, die sich in Gefahr sehen, mögen bitte die mit $\bigstar$ markierten Passagen übergehen. \(\endgroup\)
mehr... | 33008 Bytes mehr | 6 Kommentare | Druckbare Version  | Mathematik


Werkzeuge: Spielkarten mit LaTeX
Released by matroid on Mi. 26. September 2018 12:30:14
Written by cis - (677 x read)
Tools  \(\begingroup\)
Spielkarten mit LaTeX

Testbericht zum Paket pst-poker.sty

Bild

Seit 2008 fand man nur ein leicht fehlerhaftes Paket poker.sty des Autors Olaf Encke, der es auf seiner Privathomepage hochgeladen hatte.

Nach langer Zeit einmal wieder über das Thema nachgedacht...

Nun hat das weltbekannte LaTeX-Urgestein Herbert Voß als Überarbeitung von o.g. Paket das brandneue (3. August 2018) Paket pst-poker (CTAN) nachgereicht.
\(\endgroup\)
mehr... | 7100 Bytes mehr | 6 Kommentare | Druckbare Version  | Werkzeuge


Mathematik: Markov Belohnungs-Prozesse
Released by matroid on Mo. 24. September 2018 09:27:25
Written by LaLe - (659 x read)
Mathematik  \(\begingroup\)

Von Ameisen zu sicherer künstlicher Intelligenz: Reinforcement Learning

Teil 1: Markov-Belohnungsprozesse

Diese Reihe von drei Artikeln soll einen Überblick über Reinforcement Learning geben, im Deutschen etwa "Bestärkendes Lernen" genannt. Der erste Teil beschäftigt sich mit Markov-Belohnungsprozessen, die man sich als "Reinforcement Learning ohne Lernen" vorstellen kann. Im zweiten Teil stellen wir darauf aufbauend Markov-Entscheidungsprozesse vor. Im dritten Teil werden wir uns schließlich mit der Sicherheit künstlicher Intelligenz (im englischen: AI Safety) befassen und lernen, inwiefern Reinforcement Learning in diesem neuen Forschungsfeld relevant ist.

Das war die Kurzzusammenfassung. Wie passt das alles in einen größeren Rahmen? Künstliche Intelligenz ist in aller Munde und bestimmt immer größere Teile unserer Interaktion mit großen Konzernen. Nicht zu Unrecht machen sich daher viele Menschen Sorgen, ob ihre Daten sicher sind und ihre Persönlichkeitsrechte gewahrt werden. Um diese Probleme soll es aber hier nicht gehen, denn man kann sich überall bestens darüber informieren. Meine Motivation ist es, Einblicke zu geben in das relativ neue Forschungsfeld zur Sicherheit künstlicher Intelligenz, im Englisch auch "AI Safety" genannt. Zusammenfassen lassen sich die Bedenken wie folgt: Wenn Maschinen immer autonomer werden, wenn Reinforcement Learning immer weiter verbreitet ist, und wenn Maschinen in immer komplexeren Umgebungen handeln, dann vergrößert sich damit auch das Potential dieser Maschinen, Schäden anzurichten, selbst wenn die Entwickler beste Intentionen haben. Eine moderne Einführung in konkrete Probleme aus diesem Forschungsfeld, mit einem starken Fokus auf Reinforcement Learning, bietet der Artikel Concrete Problems in AI Safety von Amodei et al.

Dieser Artikel ist im besten Fall nur der erste in einer Reihe von drei. Er gibt eine Einführung in das Thema der Markov-Belohnungsprozesse, und der zweite eine in Reinforcement Learning. Darauf aufbauend können wir im dritten Artikel konkrete Sicherheitsbedenken von Lernverfahren studieren, die auf Reinforcement Learning basieren. Ob es zu diesen weiteren Artikeln kommen wird und ob ich sie auf deutsch, oder nur an anderer Stelle auf Englisch veröffentliche, hängt auch von eurem Interesse an diesem Thema ab. Da das mein erster Artikel ist, ist Feedback aller Art sehr erwünscht!
\(\endgroup\)
mehr... | 46093 Bytes mehr | 2 Kommentare | Druckbare Version  | Mathematik


[Weitere 8 Artikel] [Neueste Artikel] [Eine Auswahl von 'Best-Of'-Artikeln]
 

  
Buchbesprechung

Dieter Rasch und Dieter Schott
Mathematische Statisitk

Rezensiert von Verdooren:
This book in the German language, is a revised edition of the book by D. Rasch “Mathematische Statistik”, Joh. Ambrosius Barth (Heidelberg) , (1995), pages 851. From this book of 1995 the first seven chapters are deleted, namely “1. Mathematische Hilfsmittel, 2. Charakter ... [mehr...]
: Mathematik :: Mathematik für Ingenieure :: Versuchsplanung :
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
Montag, 20. Januar


Samstag, 28. Dezember


Montag, 16. Dezember


Montag, 20. Mai


Dienstag, 07. Mai


Montag, 06. Mai


Montag, 15. April


Montag, 18. März


Montag, 04. Februar


Montag, 21. Januar


Mittwoch, 02. Januar


Montag, 24. Dezember


Montag, 10. Dezember


Montag, 03. Dezember


Montag, 19. November


Montag, 12. November


Montag, 15. Oktober


Sonntag, 19. August


Sonntag, 12. August


Dienstag, 24. Juli


Mittwoch, 13. Juni


Mittwoch, 23. Mai

TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]