Die Mathe-Redaktion - 22.10.2019 16:18 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte / Top 15
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
Listenpunkt? im neuen Schwätz
ListenpunktWerde Mathe-Millionär!
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 798 Gäste und 20 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Mathematik: Auf der Suche nach 3.A7 (Teil 1/2)
Freigegeben von matroid am Mo. 25. März 2019 21:35:51
Verfasst von Dune - (334 x gelesen)
Mathematik  \(\begingroup\)
Wir betrachten folgende Matrixgruppe mit Einträgen aus dem endlichen Körper $\mathbb{F}_{25} = \mathbb{F}_5(\zeta)$, wobei $\zeta$ eine primitive dritte Einheitswurzel sei.

\( 3.A_7 = \left\langle
\begin{pmatrix}
1 & 0 & 0\\
0 & 2 & 0\\
0 & 0 & 3
\end{pmatrix},
\begin{pmatrix}
1+4 \zeta & 3+3\zeta & 3 \zeta\\
3 \zeta & 4+3\zeta & 3+4\zeta\\
\zeta & 1+\zeta & 1+\zeta
\end{pmatrix}
\right\rangle \)

Bei dieser Gruppe der Ordnung 7560, die auf den ersten Blick völlig willkürlich aussieht, handelt es sich tatsächlich um eine spannende Ausnahmegruppe! Wir sehen hier die dreifache Überlagerung der alternierenden Gruppe $A_7$, welche um 1911 von Issai Schur entdeckt wurde (allerdings als ($6 \times 6$)-Matrixgruppe über $\mathbb{C}$). Diese zweiteilige Artikelreihe wird sich mit der Frage beschäftigen, wie man systematisch auf obige Matrizen kommt. Wir werden von einer abstrakten Definition der Gruppe $3.A_7$ ausgehend zeigen, dass sie - sofern sie überhaupt existiert - zwangsläufig von diesen beiden Matrizen erzeugt werden muss. Insbesondere beweisen wir so ihre Existenz und Eindeutigkeit auf einen Schlag.

In diesem ersten Teil werden wir zunächst alle Konjugationsklassen und einige Untergruppen der $3.A_7$ (einschließlich aller Sylowgruppen) identifizieren. Von den Charaktertafeln dieser Untergruppen ausgehend werden wir mit Hilfe der Induktionsformel die Charaktertafel der $3.A_7$ bestimmen. An dieser Stelle werden wir sehen, dass die Gruppe über Körpern der Charakteristik $0$ bestenfalls als ($6 \times 6$)-Matrixgruppe realisiert werden kann. Im zweiten Teil werden wir die modulare Charaktertafel der $3.A_7$ in Charakteristik 5 und damit unter anderem den Brauer-Charakter einer irreduziblen Darstellung $3.A_7 \to \mathrm{GL}(3,\mathbb{F}_{25})$ bestimmen. Dieser Charakter wird uns dann letztendlich auf obige Matrizen führen. \(\endgroup\)
mehr... | 45908 Bytes mehr | Kommentare? | Druckbare Version  | Mathematik


Stern Mathematik: Quaternionen
Freigegeben von matroid am Do. 14. April 2005 06:57:35
Verfasst von Zaos - (7950 x gelesen)
Mathematik  \(\begingroup\)
Hallo Planetarier,

Viele von euch kennen die Hamiltonschen Quaternionen. Wie die komplexen Zahlen spielen sie eine wichtige Rolle in der Geometrie und in der Physik, jedoch wahrscheinlich den meisten eher unbekannte. Im Gegensatz zu den komplexen Zahlen, die man sich schön auf der komplexen Zahlenebene als Drehstreckungen vorstellen kann, erlauben die Quaternionen wegen Dimensionsgründen keine direkte geometrische Anschauung. In diesem Artikel werde Ich zumindest eine Anschauung für die Einheitsquaternionen (die vom euklidischen Betrag 1) erarbeiten. Mit Hilfe der stereographischen Projektion identifiziere Ich die Einheitsquaternionen mit dem IR3 vereinigt einem Punkt (Ein-Punkt-Kompaktifizierung). Ich übertrage dann die multiplikative Gruppenstruktur der Quaternionen mit Hilfe dieser Bijektion zu einer Verknüpfung auf IR3 und untersuche schließlich diese Verknüpfung. Das ganze war als eine Spielerei gedacht, denn praktisches Nutzen bringt das ganze eher nicht. Um so erstaunter war ich, dass sich wirklich schöne Formeln für diese Gruppenverknüpfung ergeben.
\(\endgroup\)
mehr... | 15717 Bytes mehr | 5 Kommentare | Druckbare Version  | Mathematik


Informatik: Lösen eines Rundreiseproblems(TSP) durch 96 Städte mittels Ameisenalgorithmus
Freigegeben von matroid am Fr. 15. März 2019 12:05:24
Verfasst von Delastelle - (281 x gelesen)
Informatik  \(\begingroup\)
Im Artikel werden mehrere Näherungslösungen zu einem symmetrischen Rundreiseproblem (TSP)
durch 96 französische Städte ("Tour de France" oder TSP96) mittels eines Ameisenalgorithmus berechnet.
In meinem Notizbuch habe ich die entsprechenden Grafiken und Programme seit 2011 liegen. \(\endgroup\)
mehr... | 11207 Bytes mehr | 5 Kommentare | Druckbare Version  | Informatik


buhs Montagsreport: Übungen zur Logik 10*
Freigegeben von matroid am Mo. 25. Februar 2019 00:00:22
Verfasst von buh - (551 x gelesen)
Bildung  \(\begingroup\)
Urlogo für buhs Montagsreport
Übungen zur Logik 10*

Schlauer werden ohne Chef


Berlin. Nach langer Pause muss ich mal wieder ein Logik-Rätsel offenbaren. Allerdings fürchte ich, dass es für die Masse der Hochqualifizierten, die hier immer nur über mathematische(r) Logik* logieren, reichlich leicht sein wird, weswegen ich es auch fachgerecht aufbereitet habe.
Gemäß vorherrschenden Konventionen zur SATZ-Struktur beginnen wir mit den Voraussetzungen:

\(\endgroup\)
mehr... | 3736 Bytes mehr | 7 Kommentare | Druckbare Version  | buhs Montagsreport


Mathematik: Über die elementaren Wachstumsmodelle
Freigegeben von matroid am Mo. 18. Februar 2019 19:11:22
Verfasst von Diophant - (799 x gelesen)
Mathematik  \(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}}\)

1. Einleitung


Dieser Artikel richtet sich hauptsächlich an Schülerinnen und Schüler im Rahmen der Vorbereitung auf das Abitur. Es wird aus diesem Grunde versucht, die vorgetragenen Sachverhalte möglichst anschaulich darzustellen, auf akademische Strenge wird aus dem gleichen Grund verzichtet.

Die Beschäftigung mit Wachstums- bzw. Zerfallsvorgängen stellt einen der am häufigsten gewählten Anwendungsbereiche der Analysis für Prüfungsaufgaben im Rahmen deutscher Abiturprüfungen dar.

Bei der Bearbeitung von Aufgaben zu diesem Thema haben wir es in erster Linie mit zwei Problemen zu tun. Zum einen fällt das Erkennen der Art des Wachstums- bzw. des Zerfallsprozesses aus der Beschreibung eines Vorgangs heraus oftmals schwer, zum anderen ist auch der Zusammenhang zwischen Wachstumsvorgang und der entsprechenden Funktionsgleichung weit weniger ersichtlich als beispielsweise bei der Anwendung der Parabelgleichung für den schiefen Wurf oder der Sinus- bzw. der Kosinusfunktion zur Beschreibung harmonischer Schwingungsvorgänge. Dies gilt insbesondere für das beschränkte und in noch stärkerem Maße für das logistische Wachstum. Um hier Abhilfe zu schaffen, rückt ein Instrument der Analysis in den Blickpunkt, welches im Rahmen der Schulmathematik erfahrungsgemäß viel zu kurz kommt: Die Differentialgleichung.

In diesem Artikel sollen vier elementare Wachstumsmodelle vorgestellt werden:

  • Lineares Wachstum
  • Exponentielles Wachstum
  • Beschränktes Wachstum
  • Logistisches Wachstum
\(\endgroup\)
mehr... | 32319 Bytes mehr | 5 Kommentare | Druckbare Version  | Mathematik


Matheplanet-Award: Verleihung der 17. Matheplanet-Mitglieder-Awards
Freigegeben von matroid am So. 27. Januar 2019 15:00:01
Verfasst von matroid - (1263 x gelesen)
Matheplanet-Award  \(\begingroup\)\(\newcommand{\IX}{\mathbb{X}} \newcommand{\IW}{\mathbb{W}} \)
Verleihung
der 17. Matheplanet-Mitglieder-Awards

27. Januar 2019
\(\endgroup\)
mehr... | 113998 Bytes mehr | 21 Kommentare | Druckbare Version  | Matheplanet-Award


Physik: MontyPythagoras Wunderbare Welt Der Schwerkraft
Freigegeben von matroid am Sa. 19. Januar 2019 23:47:20
Verfasst von MontyPythagoras - (546 x gelesen)
Physik  \(\begingroup\)
And now for something completely differential

S


chwerkraft ist wohl die erste Kraft, mit der jeder Mensch in seinem Leben Erfahrungen macht. Meistens negative, nämlich bei seinen ersten Versuchen, ihr zu trotzen und aufrecht zu gehen, wie es sich für einen Homo sapiens gehört. Trotzdem hat es sehr lange gebraucht, bis die dahinter stehenden, mathematischen Gesetzmäßigkeiten erkannt wurden, und zwar durch den oben etwas gestresst wirkenden Sir Isaac Neutonne in seiner berühmten, 1687 erschienenen Schrift Philosophiae Naturalis Principia Mathematica. Übrigens nicht in der heute gebräuchlichen, expliziten Formel, die entstand erst fast 200 Jahre später. Ein Apfel soll bei der Entdeckung auch eine entscheidende Rolle gespielt haben, aber das ist wohl nur Mythos.
Während wohl jeder wissenschaftsaffine Mensch die berühmte Formel kennt (vielleicht die zweitberühmteste nach $E=mc^2$), möchte ich in diesem Artikel aus meiner Reihe "Physikalisches Wissen, das keiner braucht" einige sich daraus ergebende Schlussfolgerungen zum Besten geben, die offenkundig weniger bekannt sind.
Gleichzeitig ist der Artikel auch zu einer kleinen Hommage an die berühmte und für mich namensstiftende Komikertruppe geworden. \(\endgroup\)
mehr... | 28750 Bytes mehr | 5 Kommentare | Druckbare Version  | Physik


Mathematik: Der Preis der Freiheit
Freigegeben von matroid am Sa. 06. Oktober 2018 09:22:28
Verfasst von AnnaKath - (715 x gelesen)
Vermischtes  \(\begingroup\)

Der Preis der Freiheit

- Selfish Routing -

Dieser Artikel beschäftigt sich in seinem (überschaubaren) mathematischen Kern mit einem kleinen Satz, der die Ineffizienz eines so genannten "selfish routing algorithm" beschränkt. Es ist aber auch ein Ziel, diese Aussage etwas weiter zu interpretieren und darzulegen, wie man von ganz anderen Fragestellungen motiviert, auf dieses Resultat stoßen kann.

Dies ist eines der Dinge, die ich an der Mathematik so mag; durch die hohe Abstraktion und präzise Fassung von Begriffen tun sich gelegentlich ungeahnte Anwendungen auf. Auch dies soll der Artikel exemplarisch veranschaulichen. Natürlich mag auch die rein mathematische Aussage interessant sein und wer sich nur dafür interessiert möge die weiteren Ausführungen ignorieren. Um dies zu erleichtern sind die zu überschlagenden Textteile durch einen $\bigstar$ markiert und sogar durch $\bigstar\bigstar$, wenn es sich um eine rein persönliche Bemerkungen handelt.

Zum Titel: Der übliche englische Begriff für das zu Behandelnde lautet "price of anarchy". Auch eine direkte Übersetzung gäbe durchaus wieder, worum es dabei geht, entspricht aber nicht der (persönlichen) Motivation.

Und eine letzte Anmerkung vorweg: Ich schreibe diesen Artikel aus Sicht einer Volkswirtschaftlerin. Diese Disziplin nannte man früher "politische Ökonomie" und so lässt es sich nicht vermeiden, dass man die ein oder andere Aussage eben "politisch" deuten kann.
Dies ist ausdrücklich nicht meine Absicht und wäre eine vorsätzliche Missinterpretation. Leser, die sich in Gefahr sehen, mögen bitte die mit $\bigstar$ markierten Passagen übergehen. \(\endgroup\)
mehr... | 33008 Bytes mehr | 6 Kommentare | Druckbare Version  | Mathematik


Werkzeuge: Spielkarten mit LaTeX
Freigegeben von matroid am Mi. 26. September 2018 12:30:14
Verfasst von cis - (569 x gelesen)
Tools  \(\begingroup\)
Spielkarten mit LaTeX

Testbericht zum Paket pst-poker.sty

Bild

Seit 2008 fand man nur ein leicht fehlerhaftes Paket poker.sty des Autors Olaf Encke, der es auf seiner Privathomepage hochgeladen hatte.

Nach langer Zeit einmal wieder über das Thema nachgedacht...

Nun hat das weltbekannte LaTeX-Urgestein Herbert Voß als Überarbeitung von o.g. Paket das brandneue (3. August 2018) Paket pst-poker (CTAN) nachgereicht.
\(\endgroup\)
mehr... | 7100 Bytes mehr | 6 Kommentare | Druckbare Version  | Werkzeuge


[Weitere 8 Artikel] [Neueste Artikel] [Eine Auswahl von 'Best-Of'-Artikeln]
 

  
Buchbesprechung

Pelant, Ivan; Valenta, Jan
Luminescence Spectroscopy of Semiconductors

Rezensiert von Berufspenner:
Die Photolumineszenzspektroskopie ist ein kontaktloses, zerstörungsfreies und vielseitig einsetzbares Verfahren der Materialanalytik und findet Einsatz in vielen Bereichen der Naturwissenschaften. Es ist besonders bei der Charakterisierung optoelektronischer Materialien in der H ... [mehr...]
: Spektroskopie :: Photolumineszenz :: Halbleiter :: Halbleiterphysik :: Laser :
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
Montag, 20. Mai


Dienstag, 07. Mai


Montag, 06. Mai


Montag, 15. April


Montag, 18. März


Montag, 04. Februar


Montag, 21. Januar


Mittwoch, 02. Januar


Montag, 24. Dezember


Montag, 10. Dezember


Montag, 03. Dezember


Montag, 19. November


Montag, 12. November


Montag, 15. Oktober


Montag, 24. September


Sonntag, 19. August


Sonntag, 12. August


Dienstag, 24. Juli


Mittwoch, 13. Juni


Mittwoch, 23. Mai


Donnerstag, 26. April


Dienstag, 24. April

TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2019 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]