buhs Montagsreport: Neues MileLight der Forschung
Released by matroid on Mi. 01. April 2020 00:00:21
Written by buh - (395 x read)
Matroids Matheplanet  \(\begingroup\)
Das Gerno-Logo für buhs Montagsreport
Neues MileLight der Forschung
Subtraktion endgültig kommutativ


03869 Duemmer*. Noch immer ist die Welt nicht perfekt.
Noch immer fehlen Beweise.
Noch ist Hoffnung.
Unermüdlich forschen und wirken Gerno Twolte**&Team©, um der Mathematik ein Stück weiter den Weg zu ebnen.
Und wieder einmal ist es soweit: Der Erbe der Titanen, der Plotter der Smartboardrunde, der unermüdliche Rächer der Inversen hat ein weiteres MileLight**** in harter Teamarbeit bewiesen:

Die Subtraktion ist kommutativ*!

Unglaublich, aber wahr: Was niemand bisher für möglich hielt, konnten Gerno Twolte&Team© \(\endgroup\)
mehr... | 2999 Bytes mehr | 5 Kommentare | Druckbare Version  | buhs Montagsreport


Stern Mathematik: Differentialgleichungen
Released by matroid on Sa. 08. November 2003 12:56:28
Written by pendragon302 - (386381 x read)
Mathematik  \(\begingroup\)



  Differentialgleichungen





Dieser, mein fünfter Artikel handelt von Differentialgleichungen. Ich möchte euch zeigen, wie man bestimmte Formen von Differentialgleichungen löst. Bevor man sich ans Lösen einer Differentialgleichung macht, sollte man die DGL erst einmal klassifizieren.
Dazu hat Eckard in seinem Readme.First etwas schönes geschrieben. Dort findet man auch Beispiele zu den in meinem Artikel behandelten Differentialgleichungen, aber auch ein Blick in das Forum Differentialgleichungen kann nicht schaden.

pdf-Version des Artikels

Inhalt:



Lineare Differentialgleichungen erster Ordnung

fed-Code einblenden
Hier

fed-Code einblenden
Hier
Nichtlineare Differentialgleichungen erster Ordnung

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier
Parametrisierung

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier

fed-Code einblenden
Hier
Lineare Differentialgleichungen höherer Ordnung
Konstante Koeffizienten

fed-Code einblenden
Hier
Eulersche Differentialgleichung

fed-Code einblenden
Hier
\(\endgroup\)
mehr... | 62597 Bytes mehr | 43 Kommentare | Druckbare Version  | Mathematik


buhs Montagsreport: n.n..n…neunzehn
Released by matroid on Mo. 16. März 2020 07:55:09
Written by buh - (416 x read)
Matroids Matheplanet  \(\begingroup\)
Logo mit Schein für buhs Montagsreport
n.n..n…neunzehn

Eine Corona ohne Corona


Berlin*.Nein, nicht noch ein Corona-Report mit "Rasierwasser hilft vermutlich gegen Fibrosen"; "Putin hat Tramp L. das Xiaoha-Virus geklaut" oder "Haaaaaferflocken‼ Nur noch wenige Tüten im Angebot‼"; aber ein Corona-Report aus aktuellem Anlass: \(\endgroup\)
mehr... | 2236 Bytes mehr | 5 Kommentare | Druckbare Version  | buhs Montagsreport


buhs Montagsreport: Nachhaltigkeit und Rechnen
Released by matroid on Mo. 17. Februar 2020 20:58:12
Written by Leonardo_ver_Wuenschmi - (383 x read)
Matroids Matheplanet  \(\begingroup\)
Reverses Urlogo für buhs Montagsreport
Nachhaltigkeit und Rechnen

Zu Herkunft und Zukunft der Zahlen


Zinbiel: Auch die Rückseite des Matheplaneten ist von so nicht vorhersehbaren Veränderungen betroffen. Und das nicht zu knapp!
Während sich auf der sogenannten FrontPage alles um Meeresspiegel, Klimawandel und essbares Unfleisch dreht, drohen der Rückseite des Matheplaneten die Zahlen auszugehen!
Einer soeben veröffentlichten Studie des MM* zufolge wird es möglicherweise in wenigen Jahren nur noch vereinzelt ZAHLEN geben‼ Eine Zahlenknappheit droht!
Die Gründe dafür sind
\(\endgroup\)
mehr... | 4397 Bytes mehr | 4 Kommentare | Druckbare Version  | buhs Montagsreport


Mathematik: Jenseits der quadratischen Ergänzung
Released by matroid on So. 09. Februar 2020 14:17:23
Written by Gerhardus - (344 x read)
Mathematik  \(\begingroup\)
Jenseits der quadratischen Ergänzung - Wesentliches über die Mathematik von Parabeln

Elementare Beweise für quadratische Funktionen und Parabeln diesseits und jenseits der Schulmathematik: Geometrie, Algebra, Koeffizientenvergleich, Lösungsmethoden, Vieta jumping, Tangenten, Brennpunkt-Eigenschaft, die Parabel als echter Kegelschnitt, Quadratur des Archimedes und Parabeln mit beliebigen Achsen in der x-y-Ebene. Für jeden, der mehr will als die gewöhnlichen Lehrbücher bieten. Mein 13. matheplanet-Artikel des lapidaren Wissens mit über 20 Sätzen. Zum Jenseits bitte hier klicken. Hier geht es weiter zum
\(\endgroup\)
mehr... | 7523 Bytes mehr | Kommentare? | Druckbare Version  | Mathematik


Matheplanet-Award: Verleihung der 18. Matheplanet-Mitglieder-Awards
Released by matroid on So. 26. Januar 2020 15:00:04
Written by matroid - (1291 x read)
Matheplanet-Award  \(\begingroup\)\(\newcommand{\IX}{\mathbb{X}} \newcommand{\IW}{\mathbb{M}} \newcommand{\politician}[1]{\text{Ich habe die Frage nicht verstanden. #1}} \)
Verleihung
der 18. Matheplanet-Mitglieder-Awards

26. Januar 2020
\(\endgroup\)
mehr... | 114235 Bytes mehr | 26 Kommentare | Druckbare Version  | Matheplanet-Award


Mathematik: Ramsey-Zahlen
Released by matroid on Mo. 23. Dezember 2019 20:06:37
Written by Triceratops - (367 x read)
Mathematik  \(\begingroup\)

Ramsey-Zahlen

Silvester steht vor der Tür. Auf so einer Silvesterparty sehen sich manche Gäste zum ersten mal und kannten sich vorher nur über Ecken. Es gibt also unterschiedlich große Gruppen von einander Bekannten und Gruppen von einander Fremden. Wie groß können diese Gruppen sein? Oder genauer gesagt, wie groß muss die Anzahl der Gäste überhaupt sein, damit es auf jeden Fall eine Gruppe von $n$ Bekannten oder eine Gruppe von $m$ Fremden gibt? (Beides gleichzeitig können wir natürlich nicht erwarten.) Oder gibt es überhaupt so eine Anzahl? Das Theorem von Ramsey sagt, dass es tatsächlich eine solche Anzahl gibt. Die Mindestanzahl von benötigten Gästen wird als Ramsey-Zahl $R(n,m)$ definiert. Bis heute sind nur relativ wenige konkrete Werte von $R(n,m)$ bekannt. Es gilt zum Beispiel $R(4,4)=18$, was bedeutet, dass es auf einer Party mit $18$ Gästen (aber nicht unbedingt auf einer Party mit $17$ Gästen) auf jeden Fall $4$ Bekannte oder $4$ Fremde gibt. Dieser Artikel gibt eine kurze Einführung in Ramsey-Zahlen.

\(\endgroup\)
mehr... | 18138 Bytes mehr | Kommentare? | Druckbare Version  | Mathematik


Mathematik: Anzahl der Abbildungen $f$ mit $f^p = f^q$
Released by matroid on Fr. 13. Dezember 2019 21:45:02
Written by Triceratops - (420 x read)
Mathematik  \(\begingroup\)

Anzahl der Abbildungen $f$ mit $f^p=f^q$

Für feste natürliche Zahlen $n,p,q$ bestimmen wir die Anzahl der Abbildungen $f : \{1,\dotsc,n\} \to \{1,\dotsc,n\}$ mit $f^p = f^q$, wobei $f^p$ die $p$-fache Verkettung von $f$ sei. Wir leiten insbesondere für festes $p \geq 2$ und $q=1$ die erzeugende Funktion $\exp(\sum_{d ~\mid~ p-1} \frac{1}{d} (z \cdot \exp(z))^d)$ für die Anzahlen her. Am Ende zeigen wir eine alternative Herleitung auf, die mit kombinatorischen Spezies arbeitet. Das folgende Bild zeigt zum Beispiel eine Abbildung $f$ mit $f^6=f^2$.

<math>
\newcommand{\rdot}{\textcolor{red}{$\bullet$}}
\newcommand{\bdot}{\textcolor{blue}{$\bullet$}}
\begin{tikzpicture}[inner sep=0pt,>=latex]
\node (W1) at (0,1) {\bdot};
\node (W2) at (1,1.8) {\bdot};
\node (W3) at (2,1) {\bdot};
\node (W4) at (1,0.2) {\bdot};
\node (A1) at (-1.1,1) {\rdot};
\node (A2) at (-2,2) {\rdot};
\node (A3) at (-2,0) {\rdot};
\node (B1) at (3.2,2) {\rdot};
\node (B2) at (3.2,0) {\rdot};
\draw [blue,->] (W1) to (W2);
\draw [blue,->] (W2) to (W3);
\draw [blue,->] (W3) to (W4);
\draw [blue,->] (W4) to (W1);
\draw [red,->] (A1) to (W1);
\draw [red,->,bend right=10] (A2) to (A1);
\draw [red,->,bend left=10] (A3) to (A1);
\draw [red,->,bend left=10] (B1) to (W3);
\draw [red,->,bend right=10] (B2) to (W3);
\end{tikzpicture}</math>
\(\endgroup\)
mehr... | 37131 Bytes mehr | 1 Kommentar | Druckbare Version  | Mathematik


Mathematik: Ein schwieriges Problem auf der IMO
Released by matroid on So. 08. Dezember 2019 08:36:17
Written by trunx - (1804 x read)
Mathematik  \(\begingroup\)\(\usepackage{setspace}\)
Auf der Wikipediaseite "Internationale Mathematik-Olympiade" werden die zwei schwersten Probleme genannt, die je auf einer IMO gestellt worden sind. Beide Aufgaben konnten nur von 11 Schülern gelöst werden, einmal (1986) bei insgesamt 210, das zweite Mal (1988) bei insgesamt 268 Teilnehmern.

Während für die erste dieser Aufgaben auch eine Lösung verlinkt wurde, habe ich für die zweite Aufgabe keine Lösung im Internet gefunden (aber auch nicht wirklich intensiv danach gesucht). Da es zudem hieß, dass weder die Mitglieder des Aufgabenausschusses noch von ihnen beauftragte Mathematiker des entsprechenden Fachgebietes (Zahlentheorie) die Aufgabe in 6h lösen konnten, war bei mir das Interesse geweckt.

Die Aufgabe lautete (siehe hier):

Let \(a\) and \(b\) positive integers such that \(ab+1\) divides \(a^2 +b^2\). Show that
\[\frac{a^2 +b^2}{ab+1}\] is the square of an integer.

(dt. lt. wikipedia: Sind \(a\) und \(b\) natürliche Zahlen, sodass \[c=\frac{a^2 +b^2}{ab+1}\] ebenfalls eine natürliche Zahl ist, ist c sogar eine Quadratzahl.)

Ich habe deutlich mehr als 6h für die Lösung gebraucht, aber es hat Spass gemacht. Daher, wer es selbst probieren will, macht jetzt besser den PC aus und rechnet!

Nachtrag: Die nachgelieferte Zuendeführung des angekündigten Beweises findet sich im nächsten Abschnitt in blauer Schrift. \(\endgroup\)
mehr... | 9236 Bytes mehr | 42 Kommentare | Druckbare Version  | Mathematik


[Weitere 8 Artikel] [Neueste Artikel] [Eine Auswahl von 'Best-Of'-Artikeln]
 

  
Buchbesprechung

Glaser, Wolfgang
Photonik für Ingenieure

Rezensiert von Berufspenner:
Dem Autor ist mit diesem Buch ein sehr ansprechender Abriss der relevanten Themengebiete gelungen, die für Nachrichtentechniker, denen es häufig an den notwendigen Fachvorlesungen mangelt, für ein fundiertes Verständnis optischer Kommunikationssysteme notwendig sind. Nach ein ... [mehr...]
: Photonik :: Optik :: Optoelektronik :: optische Nachrichtentechnik :: Signalübertragung :: Signalverarbeitung :: nichtlineare Optik :
Login
Benutzername
Passwort
  Neu registrieren
Ältere Artikel
Montag, 20. Januar


Samstag, 28. Dezember


Montag, 16. Dezember


Donnerstag, 21. November


Montag, 18. November


Sonntag, 10. November


Donnerstag, 31. Oktober


Montag, 09. September


Samstag, 07. September


Montag, 02. September


Donnerstag, 29. August


Montag, 26. August


Dienstag, 20. August


Montag, 19. August


Montag, 12. August


Montag, 05. August


Sonntag, 21. Juli


Freitag, 12. Juli


Montag, 17. Juni


Montag, 20. Mai


Dienstag, 07. Mai

TPILB Project

This website features
a Blank Page according to
the recommendations
of the TPILB-Project.

Hinweise
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]