LukasNiessen




Richtiger Name: Lukas Nießen
Herkunft: Rheinland-Pfalz, Asbach
Beruf (Job o.ä.): Unternehmer
Interessen:
Mathematik, Informatik
Signatur:
Beste Grüße, Lukas Nießen
PS: Schreibt mir gerne bei Fragen. :-)
Meine Geschichte:
Ich bin 18 Jahre alt und noch Schüler auf einem Gymnasium. Ich habe ein Unternehmen gegründet als ich 16 war und liebe Mathematik bereits seit ich 9 bin. Aber auch Informatik interessiert mich sehr, insbesondere KI.
 
Gesammelte Stäbchen [Maus über ein Stäbchen fahren] [Bedeutung]
 




LukasNiessen hat im Forum den Rang Aktiv
LukasNiessen hat 83 Beiträge im Forum geschrieben.
Die Beiträge verteilen sich auf mindestens 30 Threads, davon Mathematik 97%, Andere 3%.
16 Themen wurden von LukasNiessen selbst eröffnet.
In letzter Zeit wurden auf 16 dieser Themen Antworten gegeben,
die LukasNiessen alle gelesen hat.
10 der Themen von LukasNiessen haben das Ok-Häkchen.
LukasNiessen hat 10 von 16 eigenen Themen selbst abgehakt.

[Forumbeiträge von LukasNiessen]

LukasNiessen ist Mitglied seit 30.09.2019 und wurde zuletzt am 29.05.2020 auf dem Matheplaneten gesehen.

Das Latex-Profil von LukasNiessen:
\newcommand{\defi}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\IN}{\mathbb{N}}
\newcommand{\IZ}{\mathbb{Z}}
\newcommand{\IQ}{\mathbb{Q}}
\newcommand{\IR}{\mathbb{R}}
\newcommand{\IC}{\mathbb{C}}
\DeclareMathOperator{\mer}{mer}
\DeclareMathOperator{\Sht}{Sht}
\DeclareMathOperator{\Ann}{Ann}
\DeclareMathOperator{\Et}{\acute{E}t}
\DeclareMathOperator{\et}{\acute{e}t}
\newcommand{\h}{\o{h}}
\DeclareMathOperator{\ind}{ind}
\DeclareMathOperator{\etale}{\acute{e}tale}
\DeclareMathOperator{\Coker}{Coker}
\DeclareMathOperator{\Div}{Div}
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\PGL}{PGL}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\PSL}{PSL}
\DeclareMathOperator{\SL}{SL}
\DeclareMathOperator{\Res}{Res}
\DeclareMathOperator{\equi}{equi}
\DeclareMathOperator{\Hecke}{Hecke}
\DeclareMathOperator{\Aut}{Aut}
\DeclareMathOperator{\Jac}{Jac}
\DeclareMathOperator{\GL}{GL}
\DeclareMathOperator{\HF}{HF}
\DeclareMathOperator{\HS}{HS}
\DeclareMathOperator{\Ker}{Ker}
\DeclareMathOperator{\trdeg}{trdeg}
\DeclareMathOperator{\mod}{mod}
\DeclareMathOperator{\codim}{codim}
\DeclareMathOperator{\log}{log}
\DeclareMathOperator{\Log}{Log}
\DeclareMathOperator{\Nm}{Nm}
\DeclareMathOperator{\Con}{Con}
\DeclareMathOperator{\coker}{coker}
\DeclareMathOperator{\Ob}{Ob}
\DeclareMathOperator{\Emb}{Emb}
\DeclareMathOperator{\Tr}{Tr}
\DeclareMathOperator{\Sym}{Sym}
\DeclareMathOperator{\scale}{scale}
\DeclareMathOperator{\Sper}{Sper}
\DeclareMathOperator{\Sp}{Sp}
\DeclareMathOperator{\vol}{vol}
\DeclareMathOperator{\Cl}{Cl}
\DeclareMathOperator{\Ét}{Ét}

\DeclareMathOperator{\lcm}{lcm}
\DeclareMathOperator{\ord}{ord}
\DeclareMathOperator{\End}{End}
\DeclareMathOperator{\supp}{supp}
\DeclareMathOperator{\rad}{rad}
\DeclareMathOperator{\lim}{lim}
\DeclareMathOperator{\char}{char}
\DeclareMathOperator{\Proj}{Proj}
\DeclareMathOperator{\proj}{proj}
\DeclareMathOperator{\length}{length}
\DeclareMathOperator{\locArt}{locArt}
\DeclareMathOperator{\***}{***}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\im}{im}
\DeclareMathOperator{\Pic}{Pic}
\DeclareMathOperator{\Spec}{Spec}
\DeclareMathOperator{\Gal}{Gal}
\DeclareMathOperator{\Hom}{Hom}
\DeclareMathOperator{\ker}{ker}
\DeclareMathOperator{\ht}{ht}
\DeclareMathOperator{\Frob}{Frob}
\DeclareMathOperator{\Frac}{Frac}
\DeclareMathOperator{\det}{det}

\newcommand{\AA}{\sc{A}}
\newcommand{\Rem}{\gudl{\sc{R}\!emark}}

\newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}}
\newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}}


\newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}}
\newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}}

\newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}}
\newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}}

\newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}}
\newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}}
\newcommand{\O}{\c{O}}
\DeclareMathOperator{\Ouv}{Ouv}
\newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}}
\newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}}

\newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}}
\newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}}

\newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}}
\newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}}


\newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}}
\newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}}

\newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}}
\newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}}

\newcommand{\brc}[1]{[\![#1]\!]}
\newcommand{\qst}{{}^{\color{red}{[?]}}}
\newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}}
\newcommand{\sto}{\overset{\sim}{\to}}
\newcommand{\Ga}{\mathbb{G}_a}
\newcommand{\G}{\mathbb{G}}
\newcommand{\B}{\mathbb{B}}
\newcommand{\Gm}{\G_m}
\newcommand{\d}[1]{_{#1}}
\newcommand{\nz}{\not=0}
\newcommand{\x}{(x)}
\newcommand{\y}{(y)}
\newcommand{\r}[1]{\mid_{#1}}
\newcommand{\ij}{(i,j)}
\newcommand{\o}[1]{\operatorname{#1}}
\newcommand{\ne}{\not=\emptyset}
\newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n}
\newcommand{\tfae}{\textbf{T.F.A.E.}}
\newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2}
\newcommand{\OC}{\c{O}_C}
\newcommand{\OF}{\c{O}_F}

\newcommand{\gsp}[1]{\udl{\Spec}_S(#1)}
\newcommand{\shso}{\udl{\text{Sheaves on}}}
\newcommand{\shs}{\udl{\text{Sheaves}}}
\newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)}
\newcommand{\sh}{\udl{\text{Sheaf}}}
\newcommand{\rr}{/\!\!/}
\newcommand{\EE}{\mathscr{E}}
\newcommand{\V}{\mathbb{V}}
\newcommand{\ddd}{(d,d_1,d_2)}
\newcommand{\Vd}{V_{d,d_1,d_2}}
\newcommand{\xy}{(x,y)}
\newcommand{\OX}{\c{O}_X}
\newcommand{\Ox}{\c{O}_{X,x}}
\newcommand{\KK}{\mathbb{K}}
\newcommand{\lims}{\limsup_{n\to \infty}}
\newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon}
\newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}}
\newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}}
\newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}}
\newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}}
\newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}}
\newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}}
\newcommand{\set}[2]{\{#1\mid #2\}}
\newcommand{\SS}{\mathscr{S}}
\newcommand{\FF}{\mathscr{F}}
\newcommand{\DD}{\mathscr{D}}
\newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1}
\newcommand{\noem}{\not=\emptyset}
\newcommand{\DD}{\c{D}}
\newcommand{\BB}{\mathscr{B}}
\newcommand{\Pr}{\ff{P}}
\newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0}
\newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}}
\newcommand{\wt}[1]{\widetilde{#1}}
\newcommand{\wh}[1]{\widehat{#1}}
\newcommand{\spr}[1]{\Sper(#1)}
\newcommand{\LL}{\mathscr{L}}
\newcommand{\sp}[1]{\Spec(#1)}
\newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2}
\newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2}
\newcommand{\bop}{\bigoplus}
\newcommand{\eps}{\epsilon}
\newcommand{\K}{\mathbb{K}}
\newcommand{\lxen}{\langle x_1\cos x_n\rangle}
\newcommand{\Xen}{[X_1\cos X_n]}
\newcommand{\xen}{[x_1\cos x_n]}
\newcommand{\ip}{\langle -,- \rangle}
\newcommand{\ipr}[2]{\langle #1,#2 \rangle}
\newcommand{\vth}{\vartheta}
\newcommand{\pprod}{\prod_{v\in\ff{M}_\K}}
\newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}}
\newcommand{\finfam}[1]{(#1)_{i=1}^n}
\newcommand{\fam}[1]{(#1)_{i\in I}}
\newcommand{\jfam}[1]{(#1)_{j\in J}}
\newcommand{\kfam}[1]{(#1)_{k\in K}}
\newcommand{\nfam}[1]{(#1)_{i=1}^n}
\newcommand{\nifam}[1]{(#1)_{n=0}^\infty}
\newcommand{\udl}[1]{\underline{#1}}
\newcommand{\Uij}{U_i\cap U_j}
\newcommand{\vpi}{\varphi_i}
\newcommand{\vpj}{\varphi_j}
\newcommand{\vph}{\varphi}
\newcommand{\psij}{\psi_{i,j}}
\newcommand{\CC}{\c{C}}
\newcommand{\nsum}{\sum_{n\in\N}}
\newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)}
\newcommand{\prj}[1]{\Proj (#1)}
\newcommand{\part}[2]{\frac{\partial #1}{\partial #2}}
\newcommand{\kxn}{k[x_0,\pts,x_n]}
\newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}}
\newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}}
\newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}}
\newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}}
\newcommand{\ka}{\kappa}
\newcommand{\pr}{\mathfrak{p}}
\newcommand{\abs}[1]{\left| #1\right|}
\newcommand{\ab}{\left|-\right|}
\newcommand{\eps}{\epsilon}
\newcommand{\N}{\mathbb{N}}
\newcommand{\KX}{K[X]}
\newcommand{\cov}{\c{U}}
\newcommand{\ff}[1]{\mathfrak{#1}}
\newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)}
\newcommand{\half}{\frac{1}{2}}
\newcommand{\ANF}{K/\Q}
\newcommand{\GFF}{F/{\F_p(t)}}
\newcommand{\Os}{\mathcal{O}_{S,s}}
\newcommand{\lineb}{\sc{L}}
\newcommand{\cyclm}{\Q(\sqrt[m]{1})}
\newcommand{\cyclmK}{K(\sqrt[m]{1})}
\newcommand{\LX}{L[X]}
\newcommand{\GG}{\sc{G}}
\newcommand{\OS}{\mathcal{O}_S}
\newcommand{\bb}[1]{\textbf{#1}}
\newcommand{\OY}{\mathcal{O}_Y}
\newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut}
\newcommand{\weierstr***}{\sc{W}\!eierstraß}
\newcommand{\runge}{\sc{R}\!unge}
\newcommand{\laurent}{\sc{L}\!aurent}
\newcommand{\grothendieck}{\sc{G}\!rothendieck}
\newcommand{\noether}{\sc{N}\!oether}
\newcommand{\glX}{\Gamma(X,\mathcal{O}_X)}
\newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)}
\newcommand{\finKX}{f\in K[X]}
\newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}}
\newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3}
\newcommand{\cl}[1]{\overline{#1}}
\newcommand{\sube}{\subseteq}
\newcommand{\hk}{\hookrightarrow}
\newcommand{\OYy}{\mathcal{O}_{Y,y}}
\newcommand{\supe}{\supseteq}
\newcommand{\resy}{\kappa(y)}
\newcommand{\LK}{L/K}
\newcommand{\iso}{\overset{\sim}{\to}}
\newcommand{\isom}[3]{#1\overset{#2}{\iso}#3}
\newcommand{\kn}{k^n}
\newcommand{\kvec}{\textbf{vect}(k)}
\newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)}
\newcommand{\fz}{f(X)=0}
\newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L}
\newcommand{\Q}{\mathbb{Q}}
\newcommand{\R}{\mathbb{R}}
\newcommand{\L}{\mathbb{L}}
\newcommand{\C}{\mathbb{C}}
\newcommand{\F}{\mathbb{F}}
\newcommand{\A}{\mathbb{A}}
\newcommand{\ad}{\A_k}
\newcommand{\P}{\mathbb{P}}
\newcommand{\Z}{\mathbb{Z}}
\newcommand{\Zp}{\mathbb{Z}_p}
\newcommand{\Qp}{\mathbb{Q}_p}
\newcommand{\Qq}{\mathbb{Q}_q}
\newcommand{\Fp}{\mathbb{F}_p}
\newcommand{\I}{[0,1]}
\newcommand{\In}{[0,1]^n}
\newcommand{\Fpn}{\mathbb{F}_{p^n}}
\newcommand{\Fpm}{\mathbb{F}_{p^m}}
\newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}}
\newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}}
\newcommand{\md}[3]{#1\equiv #2\pmod{#3}}
\newcommand{\ga}{\Gal(L/K)}
\newcommand{\aga}[1]{\Gal(\overline{#1}/#1)}
\newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})}
\newcommand{\gal}[2]{\Gal(#1/{#2})}
\newcommand{\c}[1]{\mathcal{#1}}
\newcommand{\skw}{\{\tau\}}
\newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}}
\newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n}
\newcommand{\IGL}{\mathbb{G}\mathbb{L}}
\newcommand{\Co}[2]{H^p(#1,#2)}
\newcommand{\OK}{\mathcal{O}_K}
\newcommand{\OL}{\mathcal{O}_L}
\newcommand{\res}[1]{\kappa(#1)}
\newcommand{\resx}{\kappa(x)}
\newcommand{\lTen}{\langle T_1\cos T_n\rangle}
\newcommand{\lXen}{\langle X_1\cos X_n\rangle}
\newcommand{\Te}{[T]}
\newcommand{\Tee}{[T_1,T_2]}
\newcommand{\Teee}{[T_1,T_2,T_3]}
\newcommand{\Ten}{[T_1\cos T_n]}
\newcommand{\Tem}{[T_1\cos T_m]}
\newcommand{\pts}{\cdots}
\newcommand{\pt}{\cdot}
\newcommand{\hm}[3]{\Hom_{#1}(#2,#3)}
\newcommand{\hom}{\Hom}
\newcommand{\dash}{\dashrightarrow}
\newcommand{\schemes}{\bb{(Sch)}}
\newcommand{\groups}{\bb{(Grp)}}
\newcommand{\rings}{\bb{(Ring)}}
\newcommand{\tx}[1]{\text{ #1 }}
\newcommand{\mm}{\ff{m}}
\newcommand{\zkinfsum}{\sum_{k=0}^\infty}
\newcommand{\ziinfsum}{\sum_{i=0}^\infty}
\newcommand{\zjinfsum}{\sum_{j=0}^\infty}
\newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a}
\newcommand{\arr}[3]{#1\overset{#2}{\to} #3}
\newcommand{\nrm}[1]{\left\|#1\right\|}
\newcommand{\nr}{\nrm{-}}
\newcommand{\ext}[2]{#1/{#2}}
\newcommand{\lam}{\lambda}


\newcommand{\a}{\alpha}
\newcommand{\be}{\beta}
\newcommand{\g}{\gamma}
\newcommand{\de}{\delta}
\newcommand{\vp}{\varphi}
\newcommand{\p}{\phi}
\newcommand{\bul}{\bullet}
\newcommand{\t}{\tau}
\newcommand{\s}{\sigma}
\newcommand{\ze}{\zeta}
\newcommand{\T}{\mathbb{T}}


\newcommand{\tm}{\times}
\newcommand{\tms}{\times\pts\times}

\newcommand{\ot}{\otimes}
\newcommand{\ots}{\otimes\pts\otimes}

\newcommand{\pls}{+\pts +}
\newcommand{\cos}{,\pts,}

\newcommand{\op}{\oplus}
\newcommand{\ops}{\oplus\pts\oplus}

\newcommand{\cr}{\circ}
\newcommand{\crs}{\circ\pts\circ}

\newcommand{\sc}[1]{\mathscr{#1}}
\newcommand{\scal}[2]{\sc{#1}{\!#2}}

\newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}}
\newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}}
\newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}}
\newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}}
\newcommand{\Task}{\gudl{\sc{T}\!ask:}}
\newcommand{\Exer}{\gudl{\sc{E}\!exercise:}}
\newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}}
\newcommand{\Goss}{\gudl{\sc{G}\!oss}}

\newcommand{\CK}{C/K}
\newcommand{\CS}{C/S}
\newcommand{\Ck}{C/k}
\newcommand{\Om}{\Omega}
\newcommand{\J}{\Jac_{\CS}^{g-1}}
\newcommand{\Fact}{\gudl{\sc{F}\!act\colon}}
\newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}}

 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]