Die Mathe-Redaktion - 25.03.2019 07:24 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
ListenpunktSchwätz / Top 15
ListenpunktWerde Mathe-Millionär!
ListenpunktAnmeldung MPCT Sept.
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 272 Gäste und 9 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von Curufin epsilonkugel
Analysis » Stetigkeit » Stetigkeitsbeweis richtig?
Druckversion
Druckversion
Autor
Universität/Hochschule J Stetigkeitsbeweis richtig?
curious_mind
Aktiv Letzter Besuch: im letzten Monat
Dabei seit: 10.11.2012
Mitteilungen: 201
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2019-02-21


Ich will beweisen:

Sei <math>r>0</math>. Dann ist <math>f: [-r,r] \longrightarrow \IR, x \longmapsto id^2 = x^2 </math> auf <math>[-r,r]</math> gleichmäßig stetig.

Beweis:
Sei <math>\eps>0</math> gegeben. Wähle <math>\delta = \frac{\eps}{2|r|}</math>. Dann ist wg. <math>|x+y|<= |x|+|y|<= |r|+|r| </math> für alle <math>|x-y|<\delta</math>:

<math>|f(x)-f(y)|=|x^2-y^2|=|x+y||x-y|<= 2|r||x-y|<2|r|\delta=\eps</math>, und da <math>\delta</math> unabhängig von <math>x,y</math> gewählt wurde, ist die Funktion <math>f</math> gleichmäßig stetig.

Ist das so korrekt?

Danke!



  Profil  Quote  Link auf diesen Beitrag Link
PrinzessinEinhorn
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2017
Mitteilungen: 2047
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2019-02-21


Magst du deinen Beitrag editieren? Du musst nur einen \-Strich setzen, nicht zwei.

Ich habe deinen Beitrag jetzt nicht im Detail nachvollzogen, aber wie kommst du auf die Abschätzung:

$2|r||x-y|<2|r|$

Warum sollte also $|x-y|<1$ gelten?

Edit:

Ich glaube wenn dein Beitrag richtig formatiert wäre, dann wäre der Beweis korrekt und du meinst es gar nicht so, wie ich es oben bemängel.



  Profil  Quote  Link auf diesen Beitrag Link
curious_mind
Aktiv Letzter Besuch: im letzten Monat
Dabei seit: 10.11.2012
Mitteilungen: 201
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, vom Themenstarter, eingetragen 2019-02-21


Sorry, diese Striche hatte ich nur einmal gemacht, aber sie waren jetzt tatsächlich doppelt überall. Kann ich nicht erklären.

Ich hoffe du bist jetzt einverstanden mit dem Beweis?

Danke!



  Profil  Quote  Link auf diesen Beitrag Link
PrinzessinEinhorn
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2017
Mitteilungen: 2047
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2019-02-21


Ja, das sollte korrekt sein.
Vielleicht solltest du aber anstelle: Für alle $|x-y|<\delta$

besser "Für alle $x,y\in[-r,r]$ schreiben.



  Profil  Quote  Link auf diesen Beitrag Link
curious_mind
Aktiv Letzter Besuch: im letzten Monat
Dabei seit: 10.11.2012
Mitteilungen: 201
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, vom Themenstarter, eingetragen 2019-02-22


Dann müsste ich aber das \(\delta\) ändern, ne?



  Profil  Quote  Link auf diesen Beitrag Link
PrinzessinEinhorn
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2017
Mitteilungen: 2047
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, eingetragen 2019-02-22


Nein, warum?



  Profil  Quote  Link auf diesen Beitrag Link
curious_mind
Aktiv Letzter Besuch: im letzten Monat
Dabei seit: 10.11.2012
Mitteilungen: 201
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.6, vom Themenstarter, eingetragen 2019-02-22


Weil das das Stetigkeitskriterium ist, dass man ein delta angeben /finden muss, sodass für |x-y|< delta |f(x)-f(y)|< ... < eps.

Nur weil x,y in [-r,r] sind, heißt das ja noch lange nicht, dass |x-y| < eps/2|r| ist.

Achso, oder meinst du einfach meine Wortwahl? Dann hättest du recht, besser wäre: "...für alle x,y in [-r,r] mit |x-y| < delta..."



  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 654
Aus: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.7, eingetragen 2019-02-23

\(\begingroup\)\(\newcommand{\monoid}[1]{   \begin{tikzcd}[->,font=\normalsize,>=angle 90,ampersand replacement=\&]   #1(1) \arrow{d}{#1(6)} \arrow[<->]{rr}{\alpha}\& \& #1(2) \arrow{d}{#1(7)}\\   #1(3) \arrow{dr}{#1(8)} \& \& #1(4)\arrow{dl}{#1(9)}\\    \& #1(5) \&   \end{tikzcd}} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\im}{im} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \newcommand{\N}{\mathbb{N}} \newcommand{\units}[1]{(\Zx{#1})^\times} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\leg}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ANF}{K/\Q} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\clKX}{\overline{K}[X]} \newcommand{\LX}{L[X]} \newcommand{\gfib}[2]{#1_{\cl{#2}}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\prou}{\text{ primitive }m \text{-th root of unity }} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\simple}{\text{Let }K'=K(\alpha)\text{ be a simple extension of  }K \text{ with minimal polynomial }\finKX} \newcommand{\Q}{\mathbb{Q}} \renewcommand{\S}{\mathbb{S}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1][k]{\Gal(\overline{#1}/#1)} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\prp}{\text{ proper }} \newcommand{\lnss}{\text{ locally noetherian Schemes}} \newcommand{\lns}{\text{ locally noetherian Scheme }} \newcommand{\ffe}{\text{ finite field extension }} \newcommand{\fge}{\text{ finite Galois extension }} \newcommand{\fne}{\text{ finite normal extension }} \newcommand{\fse}{\text{ finite separable extension }} \newcommand{\fure}{\text{ finite unramified extension }} \newcommand{\frae}{\text{ finite ramified extension }} \newcommand{\ure}{\text{ unramified extension }} \newcommand{\rae}{\text{ ramified extension }} \newcommand{\tarae}{\text{ tamely ramified extension }} \newcommand{\rain}{\text{ ramification index }} \newcommand{\indeg}{\text{ inertia index }} \newcommand{\SS}[2]{E_2^{p,q}=#1\Longrightarrow #2} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\qcqs}{\text{ quasi-compact quasi-separated }} \newcommand{\oft}{\text{ of finite type }} \newcommand{\loft}{\text{ locally of finite type }} \newcommand{\ofp}{\text{ of finite presentation }} \newcommand{\SqcOX}{\text{ Let }\mathcal{M}\text{ be a quasi-coherent} \mathcal{O}_X-\text{module}} \newcommand{\OX}{\mathcal{O}_X} \newcommand{\OC}{\mathcal{O}_C} \newcommand{\Ox}{\mathcal{O}_{X,x}} \newcommand{\OXmu}{\mathcal{O}_{X,\mu}} \newcommand{\OCx}{\mathcal{O}_{C,x}} \newcommand{\OYx}{\mathcal{O}_{Y,y}} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa_#1} \newcommand{\resx}{\kappa(x)} \newcommand{\mor}[5]{\text{ Let } #1\overset{#2}{\to} #3 \text{ be a }#4 \text{morphism of }#5} \newcommand{\let}[3]{\text{ Let } #1 \text{ be a } #2 \text{ of } #3} \newcommand{\sk}{\{\tau\}} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1,\cdots,T_n]} \newcommand{\Tem}{[T_1,\cdots,T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\Sschemes}{\schemes/S} \newcommand{\kschemes}{\schemes/k} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\Is}{\overset{\sim}{\to}} \newcommand{\oIs}[1]{\overset{#1}{\overset{\sim}{\to}}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\prj}[1]{Proj(#1)} \newcommand{\wlog}{\text{ without losing generality }} \newcommand{\ffoc}{\text{ \text{Let } f\colon C\to S \text{ be a flat family of curves of genus } g}} \newcommand{\mm}{\ff{m}} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\isom}[3]{#1\overset{#2}{\overset{\sim}{\to}}#3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\lmb}{\lambda} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\kms}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ}\)
2019-02-22 21:20 - curious_mind in Beitrag No. 6 schreibt:
Weil das das Stetigkeitskriterium ist, dass man ein delta angeben /finden muss, sodass für |x-y|< delta |f(x)-f(y)|< ... < eps.

Nur weil x,y in [-r,r] sind, heißt das ja noch lange nicht, dass |x-y| < eps/2|r| ist.

Achso, oder meinst du einfach meine Wortwahl? Dann hättest du recht, besser wäre: "...für alle x,y in [-r,r] mit |x-y| < delta..."

Hi curiousmind.
Dein Beweis ist korrekt und du hast ihn gut formuliert.

Verstehst du auch anschaulich, was gleichmäßige Stetigkeit bedeutet?
Schau mal diese netten Graphiken an:

Die sind sehr aufschlussreich.
Quelle: en.Wikipedia.org

Edit:
Ob man noch dazuschreibt, dass \(x,y\in[-r,r]\) finde ich ist Geschmackssache. Es ist klar aus welcher Menge die \(x,y\) gewählt werden.
Wichtig ist, dass du gezeigt hast, dass es zu jedem \(\epsilon>0\) ein \(\delta>0\) gibt, sodass für alle \(x,y\) mit \(\mid x-y\mid<\delta\) gilt \(\mid x^2-y^2\mid<\epsilon\) und das hast du sauber gemacht.


-----------------
"Jedes Gehirn kann Fragen beantworten. Es geht darum die richtigen Fragen zu finden."
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
curious_mind
Aktiv Letzter Besuch: im letzten Monat
Dabei seit: 10.11.2012
Mitteilungen: 201
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.8, vom Themenstarter, eingetragen 2019-02-23


Ok, danke :-)

P.S. Ja, die Grafiken aus Wiki kenne ich.



  Profil  Quote  Link auf diesen Beitrag Link
curious_mind hat die Antworten auf ihre/seine Frage gesehen.
Das Thema wurde von einem Senior oder Moderator abgehakt.
Neues Thema [Neues Thema]  Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2019 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]