Die Mathe-Redaktion - 20.06.2019 13:51 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte / Top 15
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
Listenpunkt? im neuen Schwätz
ListenpunktWerde Mathe-Millionär!
ListenpunktAnmeldung MPCT Sept.
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 620 Gäste und 33 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von Curufin epsilonkugel
Analysis » Folgen und Reihen » 0,9999... = 1
Druckversion
Druckversion
Antworten
Antworten
Autor
Universität/Hochschule 0,9999... = 1
chrissi99
Neu Letzter Besuch: im letzten Monat
Dabei seit: 21.05.2019
Mitteilungen: 1
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2019-05-21


Moinsen,
ich bin neu hier und habe mir zu diesem Thema schon zig Themen durchgelesen und mich öfter mal damit beschäftigt.

Die Beweise wie:

1/3 = 0,3333..
und somit
3/3 = 0,999... --> 1 = 0,999... sind mir alle bekannt.
Aber stimmen diese so auch?

Habe meinen Prof neulich gefragt, er meinte dazu das 0,3333... lediglich ein Grenzwert zu 1/3 ist. somit wäre 0,999... auch nur ein Grenzwert zu 1?

Zusätzlich meinte er (keine Ahnung aber ob dies stimmt), dass man theoretisch 0,333333.... nicht mit 3 multiplizieren darf, da man endlichkeiten mit unendlichkeiten nicht multiplizieren kann.

Das wäre mal mein erster Punkt.

Der 2.:

Es heist ja das keine Zahl zwischen 0,999.. und 1 liegt.
Allerdings habe ich gelesen dass es auch Hyperreele Zahlen gibt (glaube so heisen diese) und dass es damit doch zahlen gibt welche dazwischen liegen. Soweit ich dies verstanden habe.

So nun eben die Frage, ist es 1 oder nicht?
Die oben von mir genannten Punkte sprechen dagegen. Stimmen aber diese? Oder ist mir da schwachsinn erzählt worden?

Ich weiß, dass es dazu 100 Threads gibt aber in keinem davon bin ich auf meine Punkte dabei wirklich gestoßen und die Threads sind zT schon 5 Jahre oder älter.

Über antworten wäre ich sehr erfreut, vorallem über Antworten von Personen, die sich damit wirklich auskennen und dabei eine genauere Antwort kennen.

So wie ich das sehe ist es so, dass beides möglich ist.
Es ist z.T 1 z.T aber auch nicht 1, jenachdem wie man es sieht.

LG



  Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 1239
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2019-05-21

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}}\)
Hallo chrissi99 und herzlich Willkommen auf Matroids Matheplanet!

Ich gehe einmal davon aus, dass dir die Geometrische Reihe und ihr Grenzwert bekannt sind?

Es ist

\[\ba
0.\overline{9}&=\frac{9}{10}+\frac{9}{100}+\cdots\\
\\
&=9\left(\frac{1}{10}+\frac{1}{100}+\cdots\right)\\
\\
&=9\cdot\sum_{k=1}^{\infty}\left(\frac{1}{10}\right)^k\\
\\
&=9\cdot\left(\sum_{k=0}^{\infty}\left(\frac{1}{10}\right)^k-1\right)\\
\\
&=9\cdot\left(\frac{1}{1-\frac{1}{10}}-1\right)\\
\\
&=9\cdot\left(\frac{10}{9}-1\right)\\
\\
&=9\cdot\frac{1}{9}=1
\ea\]

Reicht dir das als 'Beweis' aus?

Diesen Satz:

2019-05-21 16:15 - chrissi99 im Themenstart schreibt:
Habe meinen Prof neulich gefragt, er meinte dazu das 0,3333... lediglich ein Grenzwert zu 1/3 ist. somit wäre 0,999... auch nur ein Grenzwert zu 1?

scheinst du falsch verstanden zu haben. Letztendlich ist 1 der Grenzwert, wenn man die Anzahl der Neuner hinter dem Komma unendlich groß werden lässt.

Die Sache mit den Hyperreellen Zahlen lasse ich mal aus. Meiner Ansicht nach gehört das hier nicht her, vielleicht kann aber noch jemand anders dazu Stellung nehmen.


Gruß, Diophant
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Folgende Antworten hat der Fragesteller vermutlich noch nicht gesehen.
cripper
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 12.02.2019
Mitteilungen: 61
Aus: Aachen
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, eingetragen 2019-05-21


Hallo,

ja, \(0.\overline{9}=1\). Den Beweis findest du in der Antwort von Diophant.

Der "Beweis" durch die von dir beschriebene Methode ist dubios. Die gliedweise Multiplikation von unendlich vielen Nachkommastellen ist im Allgemeinen nicht definiert (schau dir dazu beispielsweise mal \(\frac{4}{3}\) auf diese Weise an oder \(2\pi\)).

Zu den hyperrellen Zahlen:
Wenn du mathematisch weit genug fortgeschritten bist, kannst du dir den Wikipediaartikel dazu durchlesen und wirst deine Frage leicht selber beantworten können. Falls nicht, ergibt es wenig Sinn, das auszuführen, da dir dann (noch) wesentliche Begriffe der Topologie und Algebra fehlen, um die Konstruktion vernünftig nachvollziehen zu können. Es sei aber gesagt, dass die hyperrellen Zahlen eine Erweiterung der reellen Zahlen sind und man dabei einen Körper aus reellwertigen Folgen betrachtet und nicht mehr (nur) die reellen Zahlen. Und ja, in den hyperrellen Zahlen ist dann auch \((0,0.9,0.99,0.999,...)<(1,1,1,1,...)\). Allerdings zählt das ganze Thema zur Nichtstandardanalysis und sollte für dich deshalb zunächst nicht so interessant sein, wie die eigentliche Aussage, dass \(0.\overline{9}=1\) ist in den reellen Zahlen.

Gruß
cripper



  Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 1239
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2019-05-21

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}}\)
@cripper:
2019-05-21 17:25 - cripper in Beitrag No. 2 schreibt:
Der "Beweis" durch die von dir beschriebene Methode ist dubios. Die gliedweise Multiplikation von unendlich vielen Nachkommastellen ist im Allgemeinen nicht definiert (schau dir dazu beispielsweise mal \(\frac{4}{3}\) auf diese Weise an oder \(2\pi\)).

Wobei ich das streng genommen auch gemacht habe. Es muss natürlich klar sein, dass es sich um eine konvergente Reihe handelt, mit der man das macht.

Und weiter (danke für die Beispiele wink ) muss es übertragfrei möglich sein, das illustrieren ja deine Beispiele, wo dies eben nicht funktioniert.


Gruß, Diophant
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
ligning
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 07.12.2014
Mitteilungen: 2618
Aus: Berlin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, eingetragen 2019-05-21


Das Problem mit den Beweisen zu dem Thema, die man überall findet, ist dass dies lediglich vergebliche Plausibilitätsargumente sind, da die Beteiligten in der Regel mathematische Laien und sich nicht einig sind, was eine Zeichenfolge wie «0,999...» überhaupt exakt bedeutet. Nur so sind überhaupt (hier gerade mal nicht vorgebrachte) Einwände wie dass die Differenz z.B. 0,0...01 sein könne, zu verstehen. Wenn man einmal verstanden hat, was eine reelle Zahl überhaupt bedeutet, stellt sich die Frage ob 0,999...=1 ist überhaupt nicht mehr.

[Die Antwort wurde nach Beitrag No.2 begonnen.]


-----------------
⊗ ⊗ ⊗



  Profil  Quote  Link auf diesen Beitrag Link
Kuestenkind
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.04.2016
Mitteilungen: 1324
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, eingetragen 2019-05-21


Huhu,

2019-05-21 16:15 - chrissi99 im Themenstart schreibt:
So nun eben die Frage, ist es 1 oder nicht?

was denn? Im Threadtitel steht (edit: das wurde wohl geändert) 0,9999 (das ist würde ich sagen nicht 1), weiter unten 0,999... und dann noch 0,999..
Das ist für mich nur eine Zeichenkette (eigentlich sind es drei, aber ich denke du meinst immer die gleiche). Du solltest also erstmal eine Definition liefern, welche du benutzen möchtest. Definieren kannst du erstmal alles was du möchtest, da kann dich niemand hindern. Ich könnte z.B. \(0,999...:=3\) und \(0,999..:=2\), und dir nun mitteilen, dass dieses also nicht 1 ist, macht aber wenig Sinn, wenn du eine andere Definition im Kopf hast.

Nun ja - um es kurz zu machen. Wenn es um reelle Zahlen geht, würde ich dir diesen Beitrag empfehlen (er ist 4 Jahre alt, aber ich kann dir versichern, dass sich die Mathematik in dieser Zeit auf diesem Gebiet nicht neu erfunden hat), wenn du dich in den hyperreellen Zahlen bewegen möchtest, dann wäre dieser Artikel vll was für dich:


arxiv.org/pdf/0811.0164.pdf

Gruß,

Küstenkind

[Die Antwort wurde nach Beitrag No.1 begonnen.]



  Profil  Quote  Link auf diesen Beitrag Link
Kitaktus
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 11.09.2008
Mitteilungen: 5872
Aus: Niedersachsen
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.6, eingetragen 2019-05-21


2019-05-21 17:25 - cripper in Beitrag No. 2 schreibt:
Zu den hyperrellen Zahlen:
... ja, in den hyperrellen Zahlen ist dann auch \((0,0.9,0.99,0.999,...)<(1,1,1,1,...)\).
Das ist richtig, allerdings ist die hyperrelle Zahl (0,0.9,0.99,0.999,...) nicht identisch mit der reellen Zahl 0,999....
Die Behauptung 0,999... und 1 wären im Bereich der hyperreellen Zahlen verschieden, ist _nicht_ richtig.



  Profil  Quote  Link auf diesen Beitrag Link
Vercassivelaunos
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 28.02.2019
Mitteilungen: 480
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.7, eingetragen 2019-05-21

\(\begingroup\)\(\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\K}{\mathbb{K}} \newcommand{\D}{\mathrm{D}} \newcommand{\d}{\mathrm{d}} \newcommand{\i}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\span}{\operatorname{span}} \newcommand{\matrix}[1]{\left(\begin{matrix}#1\end{matrix}\right)} \newcommand{\vector}[1]{\left(\begin{array}{c}#1\end{array}\right)} \newcommand{\align}[1]{\begin{align*}#1\end{align*}} \newcommand{\ket}[1]{\left\vert#1\right>} \newcommand{\bra}[1]{\left<#1\right\vert} \newcommand{\braket}[2]{\left<#1\middle\vert#2\right>} \newcommand{\braketop}[3]{\left<#1\middle\vert#2\middle\vert#3\right>}\)
Hallo chrissi99,

Diophant hat schon den korrekten Beweis geliefert. Ich möchte dabei noch anmerken, dass die von Diophant aufgestellte Summe per Definition identisch zu $0.\overline9$ ist. Das ist die Definition einer Dezimalzahl:

\[a_0,a_{1}a_{2}\dots:=\sum_{k=0}^\infty a_k\left(\frac{1}{10}\right)^k\]
Entsprechend ist

\[0,99\dots=\sum_{k=1}^\infty 9\left(\frac{1}{10}\right)^k\]
Und das ist der Punkt, an dem es nichts zu diskutieren gibt (auch wenn es häufig trotzdem getan wird). 0,99... ist per Definition der Grenzwert dieser Reihe, und die Definition muss man entweder akzeptieren, oder drauf verzichten, mit Mathematikern über das Thema reden zu können.
Und der Grenzwert dieser Reihe ist 1 (hier kann man natürlich gerne darüber reden, wenn man die zugehörige Rechnung nicht nachvollziehen kann).
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
viertel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 04.03.2003
Mitteilungen: 26771
Aus: Hessen
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.8, eingetragen 2019-05-22


Um noch ein wenig Verwirrung (beim Fragesteller) zu stiften:

Wie ist <math>0.4\overline{9}</math> auf eine ganze Zahl zu runden?
Nach dem Komma steht eine <math>4</math>, also auf <math>0</math> abrunden.
Oder ist etwa doch auf <math>1</math> aufzurunden, da <math>0.4\overline{9}=0.5</math> ist?

Gruß vom ¼


-----------------
Bild



  Profil  Quote  Link auf diesen Beitrag Link
AnnaKath
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.12.2006
Mitteilungen: 3161
Aus: hier und dort (s. Beruf)
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.9, eingetragen 2019-05-22


Verwirrung ist gut,

wie leicht nachzuweisen gilt für jede infinitesimal kleine (hyperreelle) Zahl $\epsilon$ und jedes $n \in\mathbb{N}$:
$\frac{9 \cdot \sum_{j=1}^{n-1} 10^j}{10^n} < 1-\epsilon < 0.\bar{9} = 1 $.

Wir mögen keine hyperreellen Zahlen, aber wir gehen mit ihnen ganz formal um.

lg, AK.



  Profil  Quote  Link auf diesen Beitrag Link
Kitaktus
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 11.09.2008
Mitteilungen: 5872
Aus: Niedersachsen
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.10, eingetragen 2019-05-22


Womit man sieht, dass die üblichen Grenzwertsätze im Bereich der hyperreellen Zahlen nicht so ohne weiteres übertragbar sind.



  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 795
Aus: Ständig auf Reisen
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.11, eingetragen 2019-05-22

\(\begingroup\)\(\DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\GG}{\c{G}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\underline{\color{orange}{\mathscr{P}\!roof}\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\underline{\color{orange}{\mathscr{Q}}.\color{orange}{\mathscr{E}}.\color{orange}{\mathscr{D}}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \)
Die reellen Zahlen können als Cauchy-Folgen rationaler Zahlen modulo Nullfolgen definiert werden.
Die Folgen $a=(1,1,1,1,1,1,\cdots)$ und $b=(0,0.9,0.99,0.999,0.9999,\cdots)$
definieren die gleiche reelle Zahl, da ihre Differenz eine Nullfolge ist.
Man braucht hier meiner Meinung nach keine Geometrische Reihe (wobei das Argument mit der geometrischen Reihe natürlich schöner ist =) ).
Die Folge der Differenzen ist gleich
$a-b=(10^0,10^{-1},10^{-2},\cdots)$

\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 1239
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.12, eingetragen 2019-05-22

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \)
@xst:
2019-05-22 10:00 - xiao_shi_tou_ in Beitrag No. 11 schreibt:
Die reellen Zahlen können als Cauchy-Folgen rationaler Zahlen modulo Nullfolgen definiert werden.
Die Folgen $a=(1,1,1,1,1,1,\pts)$ und $b=(0,0.9,0.99,0.999,0.9999,\pts)$
definieren die gleiche reelle Zahl, da ihre Differenz eine Nullfolge ist.
Man braucht hier meiner Meinung nach keine Geometrische Reihe (wobei das Argument mit der geometrischen Reihe natürlich schöner ist =) ).
Die Folge der Differenzen ist gleich
$a-b=(10^0,10^{-1},10^{-2},\pts)$

In Sachen 'Schönheit' würde ich hier eher sagen: unentschieden. Möchte man den Sachverhalt Schülern näher bringen, ist der Weg über die geometrische Reihe erfahrungsgemäß der beste.

Sonst muss man heutzutage ersteinmal damit beginnen zu erklären, was überhaupt eine Folge ist...


Gruß, Diophant
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 795
Aus: Ständig auf Reisen
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.13, eingetragen 2019-05-22

\(\begingroup\)\(\DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\GG}{\c{G}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\underline{\color{orange}{\mathscr{P}\!roof}\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\underline{\color{orange}{\mathscr{Q}}.\color{orange}{\mathscr{E}}.\color{orange}{\mathscr{D}}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}}\)
2019-05-22 10:12 - Diophant in Beitrag No. 12 schreibt:
@xst:
2019-05-22 10:00 - xiao_shi_tou_ in Beitrag No. 11 schreibt:
Die reellen Zahlen können als Cauchy-Folgen rationaler Zahlen modulo Nullfolgen definiert werden.
Die Folgen $a=(1,1,1,1,1,1,\cdots)$ und $b=(0,0.9,0.99,0.999,0.9999,\cdots)$
definieren die gleiche reelle Zahl, da ihre Differenz eine Nullfolge ist.
Man braucht hier meiner Meinung nach keine Geometrische Reihe (wobei das Argument mit der geometrischen Reihe natürlich schöner ist =) ).
Die Folge der Differenzen ist gleich
$a-b=(10^0,10^{-1},10^{-2},\cdots)$

In Sachen 'Schönheit' würde ich hier eher sagen: unentschieden. Möchte man den Sachverhalt Schülern näher bringen, ist der Weg über die geometrische Reihe erfahrungsgemäß der beste.

Sonst muss man heutzutage ersteinmal damit beginnen zu erklären, was überhaupt eine Folge ist...


Gruß, Diophant
Hi Diophant.
Ich muss dir Recht geben hinsichtlich der Vorkenntnisse.
Will man die reellen Zahlen als Komplettierung von der rationalen Zahlen bezüglich des gewöhnlichen archimedischen Absolutbetrags konstruieren, dann muss man schon mindestens wissen was eine Cauchy Folge ist.
Viele Grüße
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
wij48
Junior Letzter Besuch: im letzten Monat
Dabei seit: 09.06.2008
Mitteilungen: 18
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.14, eingetragen 2019-05-22


Eine vergnüglich zu lesende Abhandlung zu diesem Thema gibt es bei Detlef D. Spalt, Vom Mythos der mathematischen Vernunft, Darmstadt 1981, S. 3Ωff. (sic!)



  Profil  Quote  Link auf diesen Beitrag Link
hyperG
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 03.02.2017
Mitteilungen: 699
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.15, eingetragen 2019-05-22


2019-05-21 16:15 - chrissi99 im Themenstart schreibt:
...
So nun eben die Frage, ist es 1 oder nicht?
...

Wird meist falsch angegangen!

Richtig ist: es gibt keinen mathematischen Algorithmus zur Konstruktion von "Periode 9"!

Egal was man versucht, da es kein "Unendlich -1" gibt (denn das bleibt Unendlich), kommt entweder immer eine ganze Zahl (1 ) heraus, oder etwas, was
1-x mit x>0.

Das "0.9..." (oder mit Querstrich über der 9) ist ein String und keine Zahl!

Die meisten denken im Kopf an eine "String-Addition"
"0." +"9" + "9" +...
aber das ist keine Mathematik (eher Informatik, und da gibt es nun mal keine Stringlänge größer als Anzahl der Atome im Weltall) bzw. es gibt dann keine  Funktion zur Wandlung in eine "Zahl unendlich klein vor 1"
Number(Unendlich-String), die dann "was zwischen 0.9... und 1"
ergeben könnte.
Selbst wenn man per Definition den String "0.9..." als Input zulassen würde, ergäbe das Ergebnis Number("0.9...")=1 .



  Profil  Quote  Link auf diesen Beitrag Link
buh
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 09.05.2001
Mitteilungen: 850
Aus: Deutschland-Berlin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.16, eingetragen 2019-05-22


Wenn man auf der Zahlengeraden eine unendliche dezimale Intervallschachtelung zur Beschreibung von Punkten als Repräsentanten von Zahlen benutzt und dazu den

"SATZ: Jede unendliche Intervallschachtelung enthält genau einen Punkt.",

dann wird schnell klar, dass an den Intervallrändern jeweils zwei Folgen denselben Punkt beschreiben, nämlich die xxx9999999999999... identisch zu xx(x+1)000000000000...

Man benötigt dazu nicht einmal reelle (die kann man so konstruieren), geschweige denn hyperreelle Zahlen.

Gruß von buh2k+19



  Profil  Quote  Link auf diesen Beitrag Link
maxpower1984
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 25.12.2006
Mitteilungen: 86
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.17, eingetragen 2019-05-23

\(\begingroup\)\( \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{\supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\GG}{\c{G}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\proof}{\udl{\mathscr{P}\mathscr{r}\mathscr{o}\mathscr{o}\mathscr{f}:}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\c{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\qed}{\ff{Q}.\ff{E}.\ff{D}.} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{n\in \N}} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \)
2019-05-22 10:00 - xiao_shi_tou_ in Beitrag No. 11 schreibt:
Die Folgen $a=(1,1,1,1,1,1,\cdots)$ und $b=(0,0.9,0.99,0.999,0.9999,\cdots)$
definieren die gleiche reelle Zahl, da ihre Differenz eine Nullfolge ist.


Hallo,

stehe gerade auf dem Schlauch, was hier der Unterschied zu Diophants Beweis sein soll. Ich meine: wie zeigt man denn, dass die Differenz eine Nullfolge ist? Doch wohl mit der geometrischen Reihe. Oder übersehe ich etwas?

LG Stephan
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Kitaktus
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 11.09.2008
Mitteilungen: 5872
Aus: Niedersachsen
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.18, eingetragen 2019-05-27 14:41

\(\begingroup\)\( \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{\supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\GG}{\c{G}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\proof}{\udl{\mathscr{P}\mathscr{r}\mathscr{o}\mathscr{o}\mathscr{f}:}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\c{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\qed}{\ff{Q}.\ff{E}.\ff{D}.} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{n\in \N}} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \)
2019-05-23 09:55 - maxpower1984 in Beitrag No. 17 schreibt:
2019-05-22 10:00 - xiao_shi_tou_ in Beitrag No. 11 schreibt:
Die Folgen $a=(1,1,1,1,1,1,\cdots)$ und $b=(0,0.9,0.99,0.999,0.9999,\cdots)$
definieren die gleiche reelle Zahl, da ihre Differenz eine Nullfolge ist.

Ich meine: wie zeigt man denn, dass die Differenz eine Nullfolge ist?
Sei $\varepsilon>0$ beliebig. Wir setzen $n=\lceil -log_{10}{(\varepsilon)} \rceil+1$. Damit ist $10^{-n}<\varepsilon$.

Kannst Du mit diesem Ansatz beweisen, dass die Differenz der beiden Folgen eine Nullfolge ist (normales Grenzwert-Kriterium)?
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2019 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]