Die Mathe-Redaktion - 17.10.2019 13:27 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte / Top 15
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
Listenpunkt? im neuen Schwätz
ListenpunktWerde Mathe-Millionär!
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 987 Gäste und 17 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von viertel GrafZahl
Mathematik » Schulmathematik » Mathematische Beweise
Druckversion
Druckversion
Antworten
Antworten
Autor
Schule Mathematische Beweise
Karoe
Neu Letzter Besuch: im letzten Monat
Dabei seit: 21.09.2019
Mitteilungen: 3
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2019-09-21 22:28


Gibt es eine Aussage, mit der sich drei Beweisformen beschreiben lassen? (direkter, indirekter Beweis, Vollst Induktion o.a) Ich dachte zB an:
- Die Summe zweier gerader Zahlen ist immer gerade.
-oder: Das Produkt einer geraden und einer ungeraden Zahl ist immer gerade.
Danke!



  Profil  Quote  Link auf diesen Beitrag Link
PrinzessinEinhorn
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2017
Mitteilungen: 2223
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2019-09-21 23:16


Hallo,

ich verstehe nicht was du damit meinst, eine Aussage durch verschiedene Beweistechniken zu beschreiben.

Suchst du eine Aussage, die sich mit allen drei Möglichkeiten beweisen ließe?




  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 984
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, eingetragen 2019-09-22 02:01

\(\begingroup\)\( \usepackage{tikz-cd} \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\h}{h} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Coker}{Coker} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Frac}{Frac} \newcommand{\AA}{\sc{A}} \newcommand{\Rem}{\gudl{\sc{R}\!emark}} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}} \newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}} \newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\qst}{^{\color{red}{\?}}} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\d}[1]{_{#1}} \newcommand{\nz}{\not=0} \newcommand{\h}[1]{^{#1}} \newcommand{\x}{(x)} \newcommand{\y}{(y)} \newcommand{\r}[1]{\mid_{#1}} \newcommand{\ij}{(i,j)} \newcommand{\o}[1]{\operatorname{#1}} \newcommand{\ne}{\not=\emptyset} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\OC}{\c{O}_C} \newcommand{\OF}{\c{O}_F} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\ddd}{(d,d_1,d_2)} \newcommand{\Vd}{V_{d,d_1,d_2}} \newcommand{\xy}{(x,y)} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}} \newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}} \newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}} \newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\sc{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}} \newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}} \newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}} \newcommand{\Task}{\gudl{\sc{T}\!ask:}} \newcommand{\Exer}{\gudl{\sc{E}\!exercise:}} \newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}} \newcommand{\Goss}{\gudl{\sc{G}\!oss}} \newcommand{\CK}{C/K} \newcommand{\CS}{C/S} \newcommand{\Ck}{C/k} \newcommand{\Om}{\Omega} \newcommand{\J}{\Jac_{\CS}^{g-1}} \)
Was meinst du damit eine Beweisform mit einer Aussage zu beschreiben?

Vermutlich möchtest du ein Beispiel einer Aussage die man auf die drei genannten Arten beweisen kann?

Sei $k\in \N$. Betrachte die Aussage:
$\sc{A}_k\tx{ist wahr}\colon\iff$ Für jede $k$ elementige $\{p_1<\pts < p_k\}$ Menge von Primzahlen gibt es immer eine Primzahl $p$ mit $p>p_i$ für alle $i=1\cos k$. Wir wollen beweisen, dass die Aussage $\sc{A}_k$ für alle $k\in \N$ wahr ist.

Direkter Beweis:
Es gibt unendlich viele Primzahlen wie zum Beispiel von Euler bewiesen wurde. Die Behauptung folgt nun daraus, dass es nur endlich viele Primzahlen unter einer festen Grenze gibt.

Indirekter Beweis:
Nehmen wir an es gibt eine Zahl $k$ sodass $\sc{A}$ falsch ist.
Sei also $\{p_1<\pts< p_k\}$ eine Ausnahme Menge.
Demnach gibt es keine Primzahl die größer als $p_k$ ist. Jetzt kann man entweder Euklids Argument benutzen indem man alle Primzahlen $\leq$ $p_k$ multipliziert und $1$ addiert oder wieder darauf hinweisen, dass es unendlich viele Primzahlen gibt.

Beweis durch Induktion
1. Induktionsanfang
Sei $p$ eine Primzahl. Man zeigt die Aussage dass es eine Primzal $q$ mit $q>p$ gibt wieder mit der Unendlichkeit der Primzahlen oder direkt mit Euklids Argument. (Der Induktionsanfang ist bereits äguivalent zu $\sc{A}_k$, denn $\forall k\colon \sc{A}_k\iff \exists k\colon \sc{A}_k$. Daher bin ich mit meinem Beispiel nicht ganz zufrieden.)
$\checkmark$

2. Schritt:
Sei $\sc{A}_k$ wahr.
Sei $\{p_1<\pts<p_k<p_{k+1}\}$ eine Menge Menge aus $k+1$ Primzahlen.
Dann ist gibt es nach Voraussetzung eine Primzahl $p$ die größer ist als $p_i$ $\forall i=2\cos k+1$, also auch $>p_1$.

Ich bin nicht so zufrieden mit meinem Beispiel, aber vielleicht bringt ja jemand noch ein besseres Beispiel.

$\viele$




-----------------
"No talent, only hard work"
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Karoe
Neu Letzter Besuch: im letzten Monat
Dabei seit: 21.09.2019
Mitteilungen: 3
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, vom Themenstarter, eingetragen 2019-09-22 09:46


Richtig, es geht vor allem darum, drei unterschiedliche Beweisverfahren anhand einer Aussage zu erklären. Ist für die Schule, daher suche ich ein einfaches Beispiel wie „Summe aus zwei geraden Zahlen ist immer gerade“ o.ä. Aber vielleicht kann man diesen Satz ja nicht über diese drei Verfahren beweisen?



  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 984
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, eingetragen 2019-09-22 10:19

\(\begingroup\)\( \usepackage{tikz-cd} \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\h}{h} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Coker}{Coker} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Frac}{Frac} \newcommand{\AA}{\sc{A}} \newcommand{\Rem}{\gudl{\sc{R}\!emark}} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}} \newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}} \newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\qst}{^{\color{red}{\?}}} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\d}[1]{_{#1}} \newcommand{\nz}{\not=0} \newcommand{\h}[1]{^{#1}} \newcommand{\x}{(x)} \newcommand{\y}{(y)} \newcommand{\r}[1]{\mid_{#1}} \newcommand{\ij}{(i,j)} \newcommand{\o}[1]{\operatorname{#1}} \newcommand{\ne}{\not=\emptyset} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\OC}{\c{O}_C} \newcommand{\OF}{\c{O}_F} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\ddd}{(d,d_1,d_2)} \newcommand{\Vd}{V_{d,d_1,d_2}} \newcommand{\xy}{(x,y)} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}} \newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}} \newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}} \newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\sc{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}} \newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}} \newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}} \newcommand{\Task}{\gudl{\sc{T}\!ask:}} \newcommand{\Exer}{\gudl{\sc{E}\!exercise:}} \newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}} \newcommand{\Goss}{\gudl{\sc{G}\!oss}} \newcommand{\CK}{C/K} \newcommand{\CS}{C/S} \newcommand{\Ck}{C/k} \newcommand{\Om}{\Omega} \newcommand{\J}{\Jac_{\CS}^{g-1}} \)
Hallo Karoe
Ich glaube kaum, dass es ein einfaches Beispiel gibt welches sich auf die oben genannten drei Arten beweisen lässt und sodass der Beweis in allen drei Fällen nicht trivial ist.
Es fängt ja schon beim Indirekten Beweis an:
Haben wir  einen direkten Beweis für $A\implies B$, dann kann man doch immer einen indirekten daraus machen indem man $\neg B$ annimmt und darauf hinweist, dass der Beweis von $A\implies B$ das zu einem Widerspruch führt.
Es macht daher wenig Sinn ein solches Beispiel zu bringen, denn wenn man schon einen direkten Beweis hat, wozu dann noch ein Indirekter Beweis der dann sowieso nur nochmal das Argument des direkten Beweises wiederholt. Man sollte lieber verschiedene Beispiele bringen die representativ sind, in dem Sinn, dass die Beweisart welche angewendet wird die Sache echt einfacher macht, oder gar erst möglich.

Was aber schon Sinn macht ist Induktive Beweise mit direkten Beweisen zu vergleichen. Es gibt hier auch einen Artikel auf dem MP der genau das macht: Der Artikel hier ist gemeint.

Der Artikel hier zeigt einen induktiven Beweis für die Ungleichung des Arithmetischen und Geometrischen Mittels welcher für Schüler durchaus zugänglich ist und auch direkt bewiesen werden kann.
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
weird
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 16.10.2009
Mitteilungen: 4968
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, eingetragen 2019-09-22 10:30

\(\begingroup\)\( \usepackage{tikz-cd} \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\h}{h} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Coker}{Coker} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Frac}{Frac} \newcommand{\AA}{\sc{A}} \newcommand{\Rem}{\gudl{\sc{R}\!emark}} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}} \newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}} \newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\qst}{^{\color{red}{\?}}} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\d}[1]{_{#1}} \newcommand{\nz}{\not=0} \newcommand{\h}[1]{^{#1}} \newcommand{\x}{(x)} \newcommand{\y}{(y)} \newcommand{\r}[1]{\mid_{#1}} \newcommand{\ij}{(i,j)} \newcommand{\o}[1]{\operatorname{#1}} \newcommand{\ne}{\not=\emptyset} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\OC}{\c{O}_C} \newcommand{\OF}{\c{O}_F} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\ddd}{(d,d_1,d_2)} \newcommand{\Vd}{V_{d,d_1,d_2}} \newcommand{\xy}{(x,y)} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}} \newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}} \newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}} \newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\sc{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}} \newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}} \newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}} \newcommand{\Task}{\gudl{\sc{T}\!ask:}} \newcommand{\Exer}{\gudl{\sc{E}\!exercise:}} \newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}} \newcommand{\Goss}{\gudl{\sc{G}\!oss}} \newcommand{\CK}{C/K} \newcommand{\CS}{C/S} \newcommand{\Ck}{C/k} \newcommand{\Om}{\Omega} \newcommand{\J}{\Jac_{\CS}^{g-1}} \)
2019-09-22 02:01 - xiao_shi_tou_ in Beitrag No. 2 schreibt:
Sei $k\in \N$. Betrachte die Aussage:
$\sc{A}_k\tx{ist wahr}\colon\iff$ Für jede $k$ elementige $\{p_1<\pts < p_k\}$ Menge von Primzahlen gibt es immer eine Primzahl $p$ mit $p>p_i$ für alle $i=1\cos k$. Wir wollen beweisen, dass die Aussage $\sc{A}_k$ für alle $k\in \N$ wahr ist.

Das ist in gewisser Weise die falsche Aussage. Die "richtige" wäre hier, dass es zu jedem $k\in\mathbb N$ immer eine $k$-elementige Menge gibt, welche nur aus Primzahlen besteht, d.h., man lässt alle Größenvergleiche weg, welche die Sache hier nur unnötig kompliziert machen. Damit sollten sich dann leicht Beispiele für die drei Beweisarten angeben lassen.

[Die Antwort wurde nach Beitrag No.3 begonnen.]
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Karoe
Neu Letzter Besuch: im letzten Monat
Dabei seit: 21.09.2019
Mitteilungen: 3
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.6, vom Themenstarter, eingetragen 2019-09-22 13:53


Vielen Dank für eure Hilfe, besonders für die prinzipielle Erklärung von xiao_shi_tou. Ich frage mich allerdings, ob die Aufgabe an sich für eine 9. Klasse geeignet ist. (insofern ist der verlinkte Artikel zur Vollst. Induktion wohl doch etwas zu anspruchsvoll) Aber hilft ja nichts, die Aufgabe ist gestellt und ich suche weiter nach einem einfachen Beispiel für zumindest zwei verschiedene Beweisverfahren.

Gibt es eventuell auch ein Beispiel (also eine Aussage), die sich mit direktem Beweis und Beweis durch Fallunterscheidung aufzeigen lässt?



  Profil  Quote  Link auf diesen Beitrag Link
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 364
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.7, eingetragen 2019-09-22 16:02


„Durch Beweisart xy beweisbar“ finde ich zu vage, was soll das überhaupt bedeuten? Wann ist ein induktiver Beweis nicht direkt/indirekt? Was ist an einem Beweis, in dem eine Fallunterscheidung vorkommt, nicht direkt/indirekt?

Zu „direkt und Fallunterscheidung“ (was auch immer das bedeuten solll), kann man sich fast beliebige elementare Kombinatorikprobleme aussuchen oder irgendwelche Teilbarkeitsprobleme und hier alle Fälle modulo $n$ durchgehen oder eben einen cleveren Beweis finden.


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei



  Profil  Quote  Link auf diesen Beitrag Link
Folgende Antworten hat der Fragesteller vermutlich noch nicht gesehen.
DavidM
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 11.06.2012
Mitteilungen: 242
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.8, eingetragen 2019-09-22 16:09


2019-09-22 13:53 - Karoe in Beitrag No. 6 schreibt:

Gibt es eventuell auch ein Beispiel (also eine Aussage), die sich mit direktem Beweis und Beweis durch Fallunterscheidung aufzeigen lässt?

Mal eine grundsätzliche Anmerkung: Für mich sind "direkter Beweis" und "Beweis durch Fallunterscheidung" keine Alternativen. Ein direkter Beweis ist ein Beweis, bei dem ausgehend von der Voraussetzung der Reihe nach verschiedene Zwischenaussagen bewiesen werden, bis man am Ende bei der Behauptung ankommt. Das Gegenteil davon ist ein indirekter Beweis, bei dem man mit der Annahme "Die Behauptung ist falsch" anfängt.

Fallunterscheidung ist aus meiner Sicht keine Alternative zu direktem oder indirektem Beweis, sondern eine Möglichkeit einen direkten oder indirekten Beweis (oder einen Teilschritt davon) auszuführen.

Ein Beispiel: Wir wollen folgende Aussage zeigen: Für jede natürliche Zahl $n$ ist $n^2$ oder $n^2-1$ durch 4 teilbar.

Beweis: Es sei $n$ eine natürliche Zahl.

1. Fall: $n$ ist gerade.
Dann ist $n=2m$ für eine natürliche Zahl $m$ und wir erhalten $n^2=4m^2$, was durch 4 teilbar ist.

2. Fall: $n$ ist ungerade.
Dann ist $n=2m+1$ für eine natürliche Zahl $m$ und wir erhalten $n^2=(2m+1)^2=4m^2+4m+1$, also ist $n^2-1=4m^2+4m$ durch 4 teilbar.

Insgesamt gilt die Behauptung also für alle natürlichen Zahlen. q.e.d.

Das ist ein direkter Beweis (ich beginne mit der Voraussetzung und ende mit der Behauptung), in dem ich eine Fallunterscheidung benutzt habe. Genauso könnte man Fallunterscheidung benutzen, um einen indirekten Beweis zu führen.

Gruß,
David

[Die Antwort wurde nach Beitrag No.6 begonnen.]



  Profil  Quote  Link auf diesen Beitrag Link
Karoe wird per Mail über neue Antworten informiert.
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2019 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]