|
Autor |
Erweiterungssatz für gleichmäßig stetige Funktionen |
|
Math_user
Aktiv  Dabei seit: 04.05.2019 Mitteilungen: 549
Herkunft: Deutschland
 |
Guten Abend zusammen
Ich befasse mich gerade mit folgendem Satz: Es seien $Y$ und $Z$ metrische Räume, und $Z$ sei vollständig. Ferner sei $X$ eine dichte Teilmenge von $Y$, und $f : X \to Z$ sei gleichmäßig stetig. Dann besitzt $f$ eine eindeutig bestimmte stetige Erweiterung $F : Y → Z$. Sie wird durch
$$F(y) = \lim_{x \to y,\, x\in X}\; f(x) ,\;\; y \in Y$$
gegeben und ist gleichmäßig stetig.
Nun verstehe ich nicht wie man genau $F$ definiert. Im Beweis steht: Ist $x \in X$, setzen wir $x_j := x$ für $j \in \Bbb N$ und finden $F(x) = \lim_{\,j}\; f(x_j) = f(x)$.
Also stellt $F$ eine Erweiterung von $f$ dar.
Ich verstehe diese Definition nicht, sei $x \in X$ so definieren wir $x_j:=x$ aber dies ist ja keine Folge oder? Wieso können wir da denn Limes nehmen? And was ist mit $x \in Y \setminus X$?
Vielen Dank für eure Hilfe und bleibt gesund
Math_user
|
Für Math_user bei den Matheplanet-Awards stimmen
Notiz Profil
Quote
Link |
Triceratops
Aktiv  Dabei seit: 28.04.2016 Mitteilungen: 5272
Herkunft: Berlin
 |     Beitrag No.1, eingetragen 2020-10-30
|
Was genau verstehst du an der Definition nicht? Hast du mit der Schreibweise dort Probleme? Hast du die Definition eines Limes nachgeschlagen? Und natürlich sind konstante Folgen Beispiele von Folgen. Dass $F$ eine Erweiterung von $f$ ist, heißt $F(x)=f(x)$ für $x \in X$. Daher betrachtet man zum Nachweis $x \in X$ und nicht $x \notin X$. Wie $F$ auf ganz $Y$ definiert ist, steht dort.
|
Notiz Profil
Quote
Link |
Math_user
Aktiv  Dabei seit: 04.05.2019 Mitteilungen: 549
Herkunft: Deutschland
 |     Beitrag No.2, vom Themenstarter, eingetragen 2020-10-31
|
Tut mir leid, ich sah gestern vor lauter Mathematik die einfachsten Sachen nicht mehr. Vielen Dank für deine Ausführung und ein gutes Wochenende.
|
Für Math_user bei den Matheplanet-Awards stimmen
Notiz Profil
Quote
Link |
|
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen. Lesen Sie die
Nutzungsbedingungen,
die Distanzierung,
die Datenschutzerklärung und das Impressum.
[Seitenanfang]
|