Matroids Matheplanet Forum Index
Moderiert von Curufin epsilonkugel
Analysis » Funktionalanalysis » Definition Supremums-Norm
Druckversion
Druckversion
Antworten
Antworten
Autor
Universität/Hochschule Definition Supremums-Norm
Rurien9713
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 27.11.2020
Mitteilungen: 176
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2020-12-05


Hallo zsm.

Kann mir jemand vielleicht den folgenden Sachverhalt erklären bzw. mir sagen woher ich diese Def. herbekomme/ herleite?

|fn(x)-f(x)|<= ||fn-f||

Ich weiß, dass die Sup-Norm natürlich größer oder gleich sein muss, aber warum verliert man das Funktionsargument x?

Ich wäre froh wenn das jemand erläutern könnte.
LG



Wahlurne Für Rurien9713 bei den Matheplanet-Awards stimmen
Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
mathsmaths
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 17.06.2020
Mitteilungen: 87
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2020-12-05


Hallo,

es gilt einfach nach der Definition der Supremumsnorm:

 $|f_n(x)-f(x)| \leq \sup_{x \in D} |f_n(x)-f(x)| = \| f_n-f\|_{\infty}$ i wobei ich mit D den Definitionsbereich der $f_n$ bezeichnet habe.



Wahlurne Für mathsmaths bei den Matheplanet-Awards stimmen
Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Vercassivelaunos
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 28.02.2019
Mitteilungen: 1174
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, eingetragen 2020-12-05

\(\begingroup\)\(\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\K}{\mathbb{K}} \newcommand{\E}{\mathbb{E}} \newcommand{\H}{\mathbb{H}} \newcommand{\D}{\mathrm{D}} \newcommand{\d}{\mathrm{d}} \newcommand{\i}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\span}{\operatorname{span}} \newcommand{\im}{\operatorname{im}} \newcommand{\id}{\operatorname{id}} \newcommand{\grad}{\operatorname{grad}} \newcommand{\zyk}[1]{\Z/#1\Z} \newcommand{\matrix}[1]{\left(\begin{matrix}#1\end{matrix}\right)} \newcommand{\vector}[1]{\left(\begin{array}{c}#1\end{array}\right)} \newcommand{\align}[1]{\begin{align*}#1\end{align*}} \newcommand{\ket}[1]{\left\vert#1\right>} \newcommand{\bra}[1]{\left<#1\right\vert} \newcommand{\braket}[2]{\left<#1\middle\vert#2\right>} \newcommand{\braketop}[3]{\left<#1\middle\vert#2\middle\vert#3\right>} \newcommand{\mean}[1]{\left<#1\right>} \newcommand{\lvert}{\left\vert} \newcommand{\rvert}{\right\vert} \newcommand{\lVert}{\left\Vert} \newcommand{\rVert}{\right\Vert} \newcommand{\Abb}{\operatorname{Abb}}\)
Hallo Rurien9713,

der Betrag ordnet einer Zahl eine weitere Zahl zu. Die Supremumsnorm ordnet einer Funktion eine Zahl zu. $f(x)$ ist eine Zahl, keine Funktion, kann also nicht das Argument der Supremumsnorm sein. Hingegen ist einfach nur $f$ eine Funktion, keine Zahl, kann also als Argument der Supremumsnorm auftreten.

Viele Grüße
Vercassivelaunos
\(\endgroup\)


Wahlurne Für Vercassivelaunos bei den Matheplanet-Awards stimmen
Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Rurien9713 hat die Antworten auf ihre/seine Frage gesehen.
Rurien9713 wird per Mail über neue Antworten informiert.
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]