Matroids Matheplanet Forum Index
Moderiert von Buri Gockel
Strukturen und Algebra » Körper und Galois-Theorie » Gibt es andere Wege, Q[sqrt(2)] ≠ IR zu zeigen?
Druckversion
Druckversion
Antworten
Antworten
Autor
Universität/Hochschule Gibt es andere Wege, Q[sqrt(2)] ≠ IR zu zeigen?
LineareAlgebruh
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2019
Mitteilungen: 98
Wohnort: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2020-12-07

\(\begingroup\)\(%%%%%%%%%%%% mathematical bold  %%%%%%%%%%%%%%%%%%%% \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} %%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%% \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} %%%%%%%%%%%%% mathematical fraktur  %%%%%%%%%%%%%%%%%%%%% \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} %%%%%%%%%%    Math operators    %%%%%%%%%%%%%%%%%%%%%%%%%%% \DeclareMathOperator{\Id}{Id}             % identity morphism % \DeclareMathOperator{\ker}{ker}           % kernel \DeclareMathOperator{\rg}{rg}             % Rang \DeclareMathOperator{\defekt}{def}        % Defekt \DeclareMathOperator{\im}{im}             % image \DeclareMathOperator{\Hom}{Hom}           % homomorphisms \DeclareMathOperator{\End}{End}           % endomorphisms \DeclareMathOperator{\Span}{Span}         % linear span %%%%%%%%%%   Anderes Zeug :D   %%%%%%%%%%%%%%%%%%%%%%%%%%% \def\C{\mathbb{C}} \def\R{\mathbb{R}} \def\K{\mathbb{K}} \def\Q{\mathbb{Q}} \def\Z{\mathbb{Z}} \def\N{\mathbb{N}} \def\H{\mathbb{H}} \def\e{\varepsilon}\)
Hallo.

Jede komplexe Zahl lässt sich darstellen als \(a+bi\) mit \(a,b \in \mathbb{R}\). Ich habe mich jetzt gefragt, ob sich dann auch jede reelle Zahl darstellen lässt als \( a+b \sqrt 2\), mit \(a,b \in \mathbb{Q}\), also mit anderen Worten, ob \(\mathbb{Q}[\sqrt 2] = \mathbb{R}\) gilt. Ich denke, dass die Aussage nicht stimmt, da \( \mathbb{Q}\) ja abzählbar ist, damit sollte der \( \mathbb{Q}^2\) ja auch abzählbar sein, richtig? Da \(\mathbb{R}\) überabzählbar ist, können die Mengen nicht gleich groß sein. Dieses Argument leuchtet mir ein, aber gibt es vielleicht noch andere Wege wie man das begründen könnte? Vielleicht gibt es eine spezielle irrationale Zahl, von der man explizit zeigen kann, dass sie nicht so darstellbar ist? Würde mich mal interessieren!
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Nuramon
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2008
Mitteilungen: 2829
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2020-12-07

\(\begingroup\)\(\newcommand{\End}{\operatorname{End}} \newcommand{\id}{\operatorname{id}} \newcommand{\GL}{\operatorname{GL}} \newcommand{\im}{\operatorname{im}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\d}{{\rm d}} \newcommand{\rg}{\operatorname{rg}} \newcommand{\spur}{\operatorname{spur}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\tr}{\operatorname{tr}}\)
Hallo,

das Abzählbarkeitsargument ist richtig.
Ja, es gibt reelle Zahlen, von denen man explizit zeigen kann, dass sie nicht in $\IQ[\sqrt 2]$ enthalten sind. Einerseits sind da alle transzendenten Zahlen, wie z.B. $e$ und $\pi$. Von Hand lässt sich leicht nachrechnen, dass z.B. $\sqrt 3$ ebenfalls nicht als $a+b\sqrt 2, a,b\in\IQ$ darstellbar ist. Wenn du dich etwas mit algebraischen Körpererweiterungen (z.B. in einer Vorlesung über Galoistheorie) beschäftigst, werden dir noch viele andere explizite Beispiele einfallen.
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
PrinzessinEinhorn
Senior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 23.01.2017
Mitteilungen: 2625
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, eingetragen 2020-12-07


Hallo,

ja das Produkt von abzählbaren Mengen ist abzählbar. Kannst du das beweisen?
Also kann $\mathbb{Q}[\sqrt{2}]$ nicht mit $\mathbb{R}$ übereinstimmen.

Eine Möglichkeit eine Zahl zu finden, die nicht in $\mathbb{Q}[\sqrt{2}]$ liegt, wäre etwa die $\sqrt{3}$ zu betrachten.

Es ist wohl naheliegend, dass diese Zahl nicht als $a+\sqrt{2}b$ darstellbar ist, bzw. nicht in $\mathbb{Q}[\sqrt{2}]$ liegt. Völlig trivial ist es aber nicht.

Angenommen so eine Darstellung existiert. Also $\sqrt{3}=a+\sqrt{2}b$. Quadrieren wir beide Seiten, dann erhalten wir

$3=a^2+2b^2+2\sqrt{2}ab\Leftrightarrow \frac{3-a^2-2b^2}{2ab}=\sqrt{2}$ (man müsste noch kurz begründen, weshalb $ab\neq 0$ gelten sollte. Das ist aber kein Problem.)

Die linke Seite ist nun eine rationale Zahl. Die rechte Seite ist aber irrational, also kann diese Gleichheit nicht bestehen.

[Die Antwort wurde vor Beitrag No.1 begonnen.]



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Triceratops
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 28.04.2016
Mitteilungen: 5623
Wohnort: Berlin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2020-12-10


Was vielleicht noch erwähnenswert ist, weil es auch eher in die positive Richtung geht: $\IQ[\sqrt{2}]$ ist eine dichte Teilmenge von $\IR$. Sogar $\IZ[\sqrt{2}]$ ist schon eine dichte Teilmenge von $\IR$.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 1258
Wohnort: Augsburg
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, eingetragen 2020-12-10

\(\begingroup\)\(\DeclareMathOperator{\mer}{mer} \DeclareMathOperator{\Sht}{Sht} \newcommand{\rk}{\o{rk}} \newcommand{\FibC}{\mathcal{F}\!\mathit{ib}_{\c{C}}} \newcommand{\grps}{\mathbf{Grp}} \newcommand{\grpds}{\mathbf{Grpd}} \newcommand{\g}{\arr{Y}{g}{Z}} \newcommand{\cF}{\c{F}} \newcommand{\elX}{\abs{X}} \newcommand{\elT}{\abs{T}} \newcommand{\elS}{\abs{S}} \newcommand{\elY}{\abs{Y}} \newcommand{\cG}{\c{G}} \newcommand{\cX}{\c{X}} \newcommand{\cY}{\c{Y}} \newcommand{\cZ}{\c{Z}} \newcommand{TT}{T'\to T} \newcommand{\fS}{\arr{X}{f}{S}} \newcommand{\sets}{\mathbf{Set}} \newcommand{\f}{\arr{X}{f}{Y}} \newcommand{\fppfsch}{(\mathbf{Sch})_{fppf}} \newcommand{\fppfschS}{(\mathbf{Sch}/S)_{fppf}} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\etaleness}{\acute{e}taleness} \newcommand{\h}{\o{h}} \newcommand{\vp}{\varphi} \newcommand{\unr}[1]{#1^{\o{un}}} \renewcommand{\H}{\o{H}} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Coker}{Coker} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\Zar}{Zar} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \newcommand{\End}{\mathop{\mathrm{End}}\nolimits} \newcommand{\cEnd}{\mathop{\mathcal{E}\!\mathit{nd}}\nolimits} \newcommand{\cIsom}{\mathop{\mathcal{I}\!\mathit{som}}\nolimits} \DeclareMathOperator{\supp}{supp} \newcommand{\cPic}{\mathop{\mathcal{P}\!\mathit{ic}}\nolimits} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\det}{det} \newcommand{\AA}{\sc{A}} \newcommand{\Rem}{\gudl{\sc{R}\!emark}} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}} \newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}} \newcommand{\O}{\c{O}} \DeclareMathOperator{\Ouv}{Ouv} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}} \newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\qst}{{}^{\color{red}{[?]}}} \newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\srj}{\twoheadrightarrow} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\d}[1]{_{#1}} \newcommand{\nz}{\not=0} \newcommand{\x}{(x)} \newcommand{\y}{(y)} \newcommand{\r}[1]{\mid_{#1}} \newcommand{\ij}{(i,j)} \newcommand{\o}[1]{\operatorname{#1}} \newcommand{\ne}{\not=\emptyset} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\OC}{\c{O}_C} \newcommand{\OF}{\c{O}_F} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\ddd}{(d,d_1,d_2)} \newcommand{\Vd}{V_{d,d_1,d_2}} \newcommand{\xy}{(x,y)} \newcommand{\OX}{\c{O}_X} \newcommand{\Ox}{\c{O}_{X,x}} \newcommand{\Oy}{\c{O}_{Y,y}} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}} \newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\sc{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\KK}{\sc{K}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\pl}[1]{\ff{S}(#1)} \newcommand{\plf}[1]{\ff{S}_{\o{fin}}(#1)} \newcommand{\pli}[1]{\ff{S}_{\infty}(#1)} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}} \newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}} \newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\sc{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\OK}{\c{O}_K} \newcommand{\OF}{\c{O}_F} \newcommand{\OL}{\c{O}_L} \newcommand{\Ok}{\c{O}_k} \newcommand{\OZ}{\c{O}_Z} \newcommand{\O}{\c{O}} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\Deft}[1]{\Defn{\tx{(#1)}}} \newcommand{\qgal}[1]{\Gal(#1/\Q)} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\exactn}[5]{0\to #1\overset{#4}{\to}#2\overset{#5}{\to}#3\to 0} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\dotsc} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}{\Hom} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\gam}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}} \newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}} \newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}} \newcommand{\Task}{\gudl{\sc{T}\!ask:}} \newcommand{\Exer}{\gudl{\sc{E}\!exercise:}} \newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}} \newcommand{\Goss}{\gudl{\sc{G}\!oss}} \newcommand{\CK}{C/K} \newcommand{\CS}{C/S} \newcommand{\Ck}{C/k} \newcommand{\Om}{\Omega} \newcommand{\J}{\Jac_{\CS}^{g-1}} \newcommand{\Fact}{\gudl{\sc{F}\!act\colon}} \newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}} \newcommand{\sep}[1]{#1^{\o{sep}}} \newcommand{\abel}[1]{#1^{\o{ab}}} \newcommand{\corres}[2]{\{#1\}\leftrightarrows\{#2\}} \newcommand{\units}[1]{#1^{\tm}} \newcommand{\line}{\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!} \newcommand{\fin}[1]{#1^{\o{fin}}} \newcommand{\infin}[1]{#1^{\infty}} \newcommand{\Ql}{\Q_{\ell}} \newcommand{\dbquot}[3]{{}_{#2}\backslash#1/_{#3}} \)
\(\endgroup\)
\(\begingroup\)\(%%%%%%%%%%%% mathematical bold  %%%%%%%%%%%%%%%%%%%% \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} %%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%% \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} %%%%%%%%%%%%% mathematical fraktur  %%%%%%%%%%%%%%%%%%%%% \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} %%%%%%%%%%    Math operators    %%%%%%%%%%%%%%%%%%%%%%%%%%% \DeclareMathOperator{\Id}{Id}             % identity morphism % \DeclareMathOperator{\ker}{ker}           % kernel \DeclareMathOperator{\rg}{rg}             % Rang \DeclareMathOperator{\defekt}{def}        % Defekt \DeclareMathOperator{\im}{im}             % image \DeclareMathOperator{\Hom}{Hom}           % homomorphisms \DeclareMathOperator{\End}{End}           % endomorphisms \DeclareMathOperator{\Span}{Span}         % linear span %%%%%%%%%%   Anderes Zeug :D   %%%%%%%%%%%%%%%%%%%%%%%%%%% \def\C{\mathbb{C}} \def\R{\mathbb{R}} \def\K{\mathbb{K}} \def\Q{\mathbb{Q}} \def\Z{\mathbb{Z}} \def\N{\mathbb{N}} \def\H{\mathbb{H}} \def\e{\varepsilon}\)2020-12-07 18:54 - LineareAlgebruh im Themenstart schreibt:
Hallo.

Jede komplexe Zahl lässt sich darstellen als \(a+bi\) mit \(a,b \in \mathbb{R}\). Ich habe mich jetzt gefragt, ob sich dann auch jede reelle Zahl darstellen lässt als \( a+b \sqrt 2\), mit \(a,b \in \mathbb{Q}\)
\(\endgroup\)\(\begingroup\)\(\DeclareMathOperator{\mer}{mer} \DeclareMathOperator{\Sht}{Sht} \newcommand{\rk}{\o{rk}} \newcommand{\FibC}{\mathcal{F}\!\mathit{ib}_{\c{C}}} \newcommand{\grps}{\mathbf{Grp}} \newcommand{\grpds}{\mathbf{Grpd}} \newcommand{\g}{\arr{Y}{g}{Z}} \newcommand{\cF}{\c{F}} \newcommand{\elX}{\abs{X}} \newcommand{\elT}{\abs{T}} \newcommand{\elS}{\abs{S}} \newcommand{\elY}{\abs{Y}} \newcommand{\cG}{\c{G}} \newcommand{\cX}{\c{X}} \newcommand{\cY}{\c{Y}} \newcommand{\cZ}{\c{Z}} \newcommand{TT}{T'\to T} \newcommand{\fS}{\arr{X}{f}{S}} \newcommand{\sets}{\mathbf{Set}} \newcommand{\f}{\arr{X}{f}{Y}} \newcommand{\fppfsch}{(\mathbf{Sch})_{fppf}} \newcommand{\fppfschS}{(\mathbf{Sch}/S)_{fppf}} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\etaleness}{\acute{e}taleness} \newcommand{\h}{\o{h}} \newcommand{\vp}{\varphi} \newcommand{\unr}[1]{#1^{\o{un}}} \renewcommand{\H}{\o{H}} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Coker}{Coker} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\Zar}{Zar} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \newcommand{\End}{\mathop{\mathrm{End}}\nolimits} \newcommand{\cEnd}{\mathop{\mathcal{E}\!\mathit{nd}}\nolimits} \newcommand{\cIsom}{\mathop{\mathcal{I}\!\mathit{som}}\nolimits} \DeclareMathOperator{\supp}{supp} \newcommand{\cPic}{\mathop{\mathcal{P}\!\mathit{ic}}\nolimits} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\det}{det} \newcommand{\AA}{\sc{A}} \newcommand{\Rem}{\gudl{\sc{R}\!emark}} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}} \newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}} \newcommand{\O}{\c{O}} \DeclareMathOperator{\Ouv}{Ouv} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}} \newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\qst}{{}^{\color{red}{[?]}}} \newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\srj}{\twoheadrightarrow} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\d}[1]{_{#1}} \newcommand{\nz}{\not=0} \newcommand{\x}{(x)} \newcommand{\y}{(y)} \newcommand{\r}[1]{\mid_{#1}} \newcommand{\ij}{(i,j)} \newcommand{\o}[1]{\operatorname{#1}} \newcommand{\ne}{\not=\emptyset} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\OC}{\c{O}_C} \newcommand{\OF}{\c{O}_F} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\ddd}{(d,d_1,d_2)} \newcommand{\Vd}{V_{d,d_1,d_2}} \newcommand{\xy}{(x,y)} \newcommand{\OX}{\c{O}_X} \newcommand{\Ox}{\c{O}_{X,x}} \newcommand{\Oy}{\c{O}_{Y,y}} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}} \newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\sc{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\KK}{\sc{K}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\pl}[1]{\ff{S}(#1)} \newcommand{\plf}[1]{\ff{S}_{\o{fin}}(#1)} \newcommand{\pli}[1]{\ff{S}_{\infty}(#1)} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}} \newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}} \newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\sc{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\OK}{\c{O}_K} \newcommand{\OF}{\c{O}_F} \newcommand{\OL}{\c{O}_L} \newcommand{\Ok}{\c{O}_k} \newcommand{\OZ}{\c{O}_Z} \newcommand{\O}{\c{O}} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\Deft}[1]{\Defn{\tx{(#1)}}} \newcommand{\qgal}[1]{\Gal(#1/\Q)} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\exactn}[5]{0\to #1\overset{#4}{\to}#2\overset{#5}{\to}#3\to 0} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\dotsc} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}{\Hom} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\gam}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}} \newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}} \newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}} \newcommand{\Task}{\gudl{\sc{T}\!ask:}} \newcommand{\Exer}{\gudl{\sc{E}\!exercise:}} \newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}} \newcommand{\Goss}{\gudl{\sc{G}\!oss}} \newcommand{\CK}{C/K} \newcommand{\CS}{C/S} \newcommand{\Ck}{C/k} \newcommand{\Om}{\Omega} \newcommand{\J}{\Jac_{\CS}^{g-1}} \newcommand{\Fact}{\gudl{\sc{F}\!act\colon}} \newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}} \newcommand{\sep}[1]{#1^{\o{sep}}} \newcommand{\abel}[1]{#1^{\o{ab}}} \newcommand{\corres}[2]{\{#1\}\leftrightarrows\{#2\}} \newcommand{\units}[1]{#1^{\tm}} \newcommand{\line}{\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!} \newcommand{\fin}[1]{#1^{\o{fin}}} \newcommand{\infin}[1]{#1^{\infty}} \newcommand{\Ql}{\Q_{\ell}} \newcommand{\dbquot}[3]{{}_{#2}\backslash#1/_{#3}} \)

Hallo.
Hier noch eine Alternative:
$\mathbb{C}$ ist ein zweidimensionaler $\mathbb{R}$-Vektorraum. Das meinst du ja mit der Aussage in der ersten Zeile. Jetzt fragst du dich, ob $\mathbb{R}$ ein zweidimensionaler $\mathbb{Q}$-Vektorraum ist und schlägst auch gleich eine konkrete Basis vor. Es reicht also festzustellen (finde drei linear unabhängige Elemente), dass aus $\lambda_1+\lambda_2\sqrt{2}+\lambda_3\sqrt{3}=0, \lambda_i\in \mathbb{Q}$ folgt $\lambda_1=\lambda_2=\lambda_3=0$. Wäre das nicht so, dann folgte(zum Beispiel im Fall, dass alle ungleich Null sind), indem du $-\lambda_1$ quadrierst, dass $\sqrt{6}=\sqrt{2}\sqrt{3}$ rational ist, was bekanntlich nicht stimmt. Die anderen Fälle gehen auch so ähnlich.



\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
LineareAlgebruh hat die Antworten auf ihre/seine Frage gesehen.
LineareAlgebruh hatte hier bereits selbst das Ok-Häkchen gesetzt.
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]