Matroids Matheplanet Forum Index
Moderiert von Fabi Dune ligning
Lineare Algebra » Lineare Abbildungen » Kurze exakte Folgen und Diagonalisierbarkeit
Druckversion
Druckversion
Autor
Universität/Hochschule J Kurze exakte Folgen und Diagonalisierbarkeit
LineareAlgebruh
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2019
Mitteilungen: 98
Wohnort: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2020-12-15

\(\begingroup\)\(%%%%%%%%%%%% mathematical bold  %%%%%%%%%%%%%%%%%%%% \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} %%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%% \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} %%%%%%%%%%%%% mathematical fraktur  %%%%%%%%%%%%%%%%%%%%% \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} %%%%%%%%%%    Math operators    %%%%%%%%%%%%%%%%%%%%%%%%%%% \DeclareMathOperator{\Id}{Id}             % identity morphism % \DeclareMathOperator{\ker}{ker}           % kernel \DeclareMathOperator{\rg}{rg}             % Rang \DeclareMathOperator{\defekt}{def}        % Defekt \DeclareMathOperator{\im}{im}             % image \DeclareMathOperator{\Hom}{Hom}           % homomorphisms \DeclareMathOperator{\End}{End}           % endomorphisms \DeclareMathOperator{\Span}{Span}         % linear span %%%%%%%%%%   Anderes Zeug :D   %%%%%%%%%%%%%%%%%%%%%%%%%%% \def\C{\mathbb{C}} \def\R{\mathbb{R}} \def\K{\mathbb{K}} \def\Q{\mathbb{Q}} \def\Z{\mathbb{Z}} \def\N{\mathbb{N}} \def\H{\mathbb{H}} \def\e{\varepsilon}\)
Hallo.

Ich bearbeite folgende Aufgabe:

"Gegeben sei das kommutative Diagramm...



... von endlich-dimensionalen K-Vektorräumen, die Zeilen sind exakt. Zeigen (oder widerlegen) Sie: Wenn f' und f'' diagonalisierbar sind, so ist auch f diagonalisierbar."

Ich habe das Gefühl, die Aussage stimmt, aber wie genau könnte man das zeigen? Hätte da jemand einen Tipp? Ich hab mir vielleicht erstmal überlegt, ein paar Basen zu wählen. Und zwar könnte man für $V'$ die Basis $B' := \{b'_1, ... , b'_n\}$ wählen, sd. $M_{B'}(f')$ diagonal ist. Für $V''$ macht man dasselbe: $B'' := \{b''_1, ... , b''_m\}$. So jetzt kann man mithilfe dieser beiden Basen eine Basis von $V$ finden, dazu definiert man sich eine Abbildung $\sigma$, die einfach einem Basisvektor aus $B''$ ein Urbild zuordnet. Dann hätten wir: $B :=\{i(b'_1), ... , i(b'_n), \sigma(b''_1), ... , \sigma(b''_m) \} $. Das bildet eine Basis von $V$, weil die $\sigma(b''_1), ... , \sigma(b''_m)$ nicht durch die $i(b'_1), ... , i(b'_n)$ konstruiert werden können, da sie sonst im Kern von $\pi$ liegen. Das klingt eigentlich garnicht so übel, aber jetzt weiss ich eben nicht, wie ich weiter machen soll. Irgendwie muss man ja noch das Diagramm ins Spiel bringen, aber ich sehe gerade keinen Weg. Kann mir jemand einen Tipp geben?
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Nuramon
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2008
Mitteilungen: 2822
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2020-12-15

\(\begingroup\)\(\newcommand{\End}{\operatorname{End}} \newcommand{\id}{\operatorname{id}} \newcommand{\GL}{\operatorname{GL}} \newcommand{\im}{\operatorname{im}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\d}{{\rm d}} \newcommand{\rg}{\operatorname{rg}} \newcommand{\spur}{\operatorname{spur}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\tr}{\operatorname{tr}}\)
Hallo,

versuche ein Gegenbeispiel mit $f: K\oplus K\to K \oplus K, (x,y)\mapsto (y,0)$ zu finden.
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
LineareAlgebruh
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2019
Mitteilungen: 98
Wohnort: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, vom Themenstarter, eingetragen 2020-12-15

\(\begingroup\)\(%%%%%%%%%%%% mathematical bold  %%%%%%%%%%%%%%%%%%%% \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} %%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%% \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} %%%%%%%%%%%%% mathematical fraktur  %%%%%%%%%%%%%%%%%%%%% \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} %%%%%%%%%%    Math operators    %%%%%%%%%%%%%%%%%%%%%%%%%%% \DeclareMathOperator{\Id}{Id}             % identity morphism % \DeclareMathOperator{\ker}{ker}           % kernel \DeclareMathOperator{\rg}{rg}             % Rang \DeclareMathOperator{\defekt}{def}        % Defekt \DeclareMathOperator{\im}{im}             % image \DeclareMathOperator{\Hom}{Hom}           % homomorphisms \DeclareMathOperator{\End}{End}           % endomorphisms \DeclareMathOperator{\Span}{Span}         % linear span %%%%%%%%%%   Anderes Zeug :D   %%%%%%%%%%%%%%%%%%%%%%%%%%% \def\C{\mathbb{C}} \def\R{\mathbb{R}} \def\K{\mathbb{K}} \def\Q{\mathbb{Q}} \def\Z{\mathbb{Z}} \def\N{\mathbb{N}} \def\H{\mathbb{H}} \def\e{\varepsilon}\)
Hmm, man könnte vielleicht $i: K \rightarrow K \oplus K, x \mapsto (x,0)$, $\pi : K \oplus K \rightarrow K, (x,y) \mapsto y$ und $f' = f'' = 0$ wählen, dann sollten $f'$ und $f''$ auf jeden Fall diagonalisierbar sein und das Diagramm kommutiert, aber $f$ wäre nicht diagonalisierbar, richtig?
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Nuramon
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2008
Mitteilungen: 2822
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2020-12-15


Ja.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
LineareAlgebruh
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2019
Mitteilungen: 98
Wohnort: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, vom Themenstarter, eingetragen 2020-12-15

\(\begingroup\)\(%%%%%%%%%%%% mathematical bold  %%%%%%%%%%%%%%%%%%%% \newcommand{\bA}{\mathbb{A}} \newcommand{\bB}{\mathbb{B}} \newcommand{\bC}{\mathbb{C}} \newcommand{\bD}{\mathbb{D}} \newcommand{\bE}{\mathbb{E}} \newcommand{\bF}{\mathbb{F}} \newcommand{\bG}{\mathbb{G}} \newcommand{\bH}{\mathbb{H}} \newcommand{\bI}{\mathbb{I}} \newcommand{\bJ}{\mathbb{J}} \newcommand{\bK}{\mathbb{K}} \newcommand{\bL}{\mathbb{L}} \newcommand{\bM}{\mathbb{M}} \newcommand{\bN}{\mathbb{N}} \newcommand{\bO}{\mathbb{O}} \newcommand{\bP}{\mathbb{P}} \newcommand{\bQ}{\mathbb{Q}} \newcommand{\bR}{\mathbb{R}} \newcommand{\bS}{\mathbb{S}} \newcommand{\bT}{\mathbb{T}} \newcommand{\bU}{\mathbb{U}} \newcommand{\bV}{\mathbb{V}} \newcommand{\bW}{\mathbb{W}} \newcommand{\bX}{\mathbb{X}} \newcommand{\bY}{\mathbb{Y}} \newcommand{\bZ}{\mathbb{Z}} %%%%%%%%% calligraphic %%%%%%%%%%%%%%%%%%%%%%% \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\cA}{\mathcal{A}} \newcommand{\cB}{\mathcal{B}} \newcommand{\cC}{\mathcal{C}} \newcommand{\cD}{\mathcal{D}} \newcommand{\cE}{\mathcal{E}} \newcommand{\cF}{\mathcal{F}} \newcommand{\cG}{\mathcal{G}} \newcommand{\cH}{\mathcal{H}} \newcommand{\cI}{\mathcal{I}} \newcommand{\cJ}{\mathcal{J}} \newcommand{\cK}{\mathcal{K}} \newcommand{\cL}{\mathcal{L}} \newcommand{\cM}{\mathcal{M}} \newcommand{\cN}{\mathcal{N}} \newcommand{\cO}{\mathcal{O}} \newcommand{\cP}{\mathcal{P}} \newcommand{\cQ}{\mathcal{Q}} \newcommand{\cR}{\mathcal{R}} \newcommand{\cS}{\mathcal{S}} \newcommand{\cT}{\mathcal{T}} \newcommand{\cU}{\mathcal{U}} \newcommand{\cV}{\mathcal{V}} \newcommand{\cW}{\mathcal{W}} \newcommand{\cX}{\mathcal{X}} \newcommand{\cY}{\mathcal{Y}} \newcommand{\cZ}{\mathcal{Z}} %%%%%%%%%%%%% mathematical fraktur  %%%%%%%%%%%%%%%%%%%%% \newcommand{\mf}[1]{\mathfrak{#1}} \newcommand{\fA}{\mathfrak{A}} \newcommand{\fB}{\mathfrak{B}} \newcommand{\fC}{\mathfrak{C}} \newcommand{\fD}{\mathfrak{D}} \newcommand{\fE}{\mathfrak{E}} \newcommand{\fF}{\mathfrak{F}} \newcommand{\fG}{\mathfrak{G}} \newcommand{\fH}{\mathfrak{H}} \newcommand{\fI}{\mathfrak{I}} \newcommand{\fJ}{\mathfrak{J}} \newcommand{\fK}{\mathfrak{K}} \newcommand{\fL}{\mathfrak{L}} \newcommand{\fM}{\mathfrak{M}} \newcommand{\fN}{\mathfrak{N}} \newcommand{\fO}{\mathfrak{O}} \newcommand{\fP}{\mathfrak{P}} \newcommand{\fQ}{\mathfrak{Q}} \newcommand{\fR}{\mathfrak{R}} \newcommand{\fS}{\mathfrak{S}} \newcommand{\fT}{\mathfrak{T}} \newcommand{\fU}{\mathfrak{U}} \newcommand{\fV}{\mathfrak{V}} \newcommand{\fW}{\mathfrak{W}} \newcommand{\fX}{\mathfrak{X}} \newcommand{\fY}{\mathfrak{Y}} \newcommand{\fZ}{\mathfrak{Z}} %%%%%%%%%%    Math operators    %%%%%%%%%%%%%%%%%%%%%%%%%%% \DeclareMathOperator{\Id}{Id}             % identity morphism % \DeclareMathOperator{\ker}{ker}           % kernel \DeclareMathOperator{\rg}{rg}             % Rang \DeclareMathOperator{\defekt}{def}        % Defekt \DeclareMathOperator{\im}{im}             % image \DeclareMathOperator{\Hom}{Hom}           % homomorphisms \DeclareMathOperator{\End}{End}           % endomorphisms \DeclareMathOperator{\Span}{Span}         % linear span %%%%%%%%%%   Anderes Zeug :D   %%%%%%%%%%%%%%%%%%%%%%%%%%% \def\C{\mathbb{C}} \def\R{\mathbb{R}} \def\K{\mathbb{K}} \def\Q{\mathbb{Q}} \def\Z{\mathbb{Z}} \def\N{\mathbb{N}} \def\H{\mathbb{H}} \def\e{\varepsilon}\)
Perfekt, vielen Dank!
Es gibt bei der Aufgabe noch ein paar mehr Teilaufgaben, hättest du vielleicht Lust, da kurz rüber zu schauen? Und zwar sollen jetzt f' und f'' nilpotent sein, man soll beweisen oder widerlegen, dass dann auch f nilpotent ist. Ich hätte gesagt das ist wahr:

Seien $a,b \in \mathbb{N}$, sd. $(f')^a = 0 = (f'')^b$ gilt. Sei nun $n:= \max \{a,b\}$. Das Diagramm lässt sich beliebig oft nach unten fortsetzen, damit folgt:

$ 0 = (f'')^n \circ \pi = \pi \circ f^n  $
Somit liegt das Bild von $f^n$ im Kern von $\pi$, damit also insbesondere auch im Bild von $i$. Weiterhin:

$ 0 = i \circ (f')^n = f^n \circ i $
Damit liegt das Bild von $i$ aber im Kern von $f^n$, also folgt sofort, dass das Bild von $f^n$ im Kern von $f^n$ liegt, also ist insbesondere $f^{2n}$ = 0.

Ist das so in Ordnung?
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Nuramon
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2008
Mitteilungen: 2822
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, eingetragen 2020-12-15

\(\begingroup\)\(\newcommand{\End}{\operatorname{End}} \newcommand{\id}{\operatorname{id}} \newcommand{\GL}{\operatorname{GL}} \newcommand{\im}{\operatorname{im}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\d}{{\rm d}} \newcommand{\rg}{\operatorname{rg}} \newcommand{\spur}{\operatorname{spur}} \newcommand{\Hom}{\operatorname{Hom}} \newcommand{\tr}{\operatorname{tr}}\)
Passt auch. Es gilt übrigens bereits $f^{a+b}=0$ (mit dem gleichen Beweis).
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
LineareAlgebruh hat die Antworten auf ihre/seine Frage gesehen.
LineareAlgebruh hat selbst das Ok-Häkchen gesetzt.
Neues Thema [Neues Thema]  Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]