Matroids Matheplanet Forum Index
Moderiert von matroid
Kombinatorik & Graphentheorie » Graphentheorie » Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
Thema eröffnet 2016-02-17 22:35 von Slash
Seite 29   [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54]   54 Seiten
Autor
Kein bestimmter Bereich Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1120, eingetragen 2018-04-10

\quoteon(2018-04-09 21:30 - Slash in Beitrag No. 1118) Wenn sich durch deine neue untere Verbindung eine neue Beweglichkeit ergibt, vielleicht passt dann oben ein einziger 2ender rein. \quoteoff schau dir das detail nochmal an, ich habe glaube ich kein holz entfernt welches zu einer neuen beweglichkeit führen könnte, dafür ist es gelungen auch oben die doppelschere zu stutzen also voila hier der neue rekord graph 4/11 771er http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-4-11-771.PNG mit nem kleinsten abstand von 0,0048 hat er ja auch nur nen h x a wert von 3,7 haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1121, vom Themenstarter, eingetragen 2018-04-12

Ein kleiner Dämpfer für uns. Das "Journal of Graph Theory" wollte uns nicht. :-( Dieses Journal war wohl doch eine Nummer zu groß. Nur Schade, dass sie ein ganzes Jahr für diese Nachricht gebraucht haben. Den Bericht der Reviewer gibt es per Mail. Gruß, Slash


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 3936
Wohnort: Raun
  Beitrag No.1122, eingetragen 2018-04-14

Bei der Eistüte #1106 erhalte ich folgende Abstände: \ #n blauer Winkel |P3-P6| |P17,P34| #4 7.37695 0.128663188006 0.07804372774966 #10 2.90364 0.050672800367 0.01635192707822 #13 2.22703 0.038866693324 0.01011542991447 #200 0.14334 0.002501798525 0.00004943283238 #2000 0.01432 0.000250018036 0.00000024973199 #20000 0.00143 0.000025000180 0.00000000250002 Variable n bezeichnet die Scherenlänge, gezählt wie in #1106, n=4 ist die nachfolgende Testeingabe, n=10 aus #1105, n=13 aus #1098, n=200 aus #1106. Die Eingabe habe ich vereinfacht, nicht alle Dreiecke werden gezeichnet: n im Quelltext ändern, dazu einen passenden blauen Winkel eingeben, so dass |P14-P16| etwa 1 ergibt, dann Button "Feinjustieren(1)" drücken. Zur Genauigkeit dieser Berechnung habe ich mir keine Gedanken gemacht. Es soll, so wie es ist, ein weiterer Versuch sein, in welcher Richtung man eine allgemeine Formel suchen könnte. Faktor 10 bei der Scherenlänge bewirkt, dass der Winkel und |P3-P6| etwa durch 10 geteilt werden und |P17,P34| etwa durch 100. Das ist eine Bestätigung für den bisherigen Grenzwert Konstante/n². \geo ebene(318.16,317.45) x(8.79,15.15) y(10,16.35) form(.) #//Eingabe war: # ##1106 n=4 # # # #P[1]=[7.617018127348274e-12,-5.4441784413938876e-11]; #P[2]=[50.000000000007674,-5.4441784413938876e-11]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); M(6,1,3,blauerWinkel); L(7,1,6); L(8,7,6); #L(9,7,8); L(10,8,6); N(11,10,3); L(12,10,11); L(13,12,11); # #n=4; #P[14]=[P[3][0]+(n-0)*(P[4][0]-P[3][0]),P[3][1]+(n-0)*(P[4][1]-P[3][1])]; #A(4,14); #P[15]=[P[11][0]+(n-2)*(P[13][0]-P[11][0]),P[11][1]+(n-2)*(P[13][1]-P[11][1])]; #A(13,15); #P[16]=[P[11][0]+(n-1)*(P[13][0]-P[11][0]),P[11][1]+(n-1)*(P[13][1]-P[11][1])]; #A(15,16); # #R(14,16); R(3,6); L(17,15,16); L(18,17,16); #A(9,18,ab(9,18,[1,18],"gespiegelt")); R(17,34); # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10.000000000000153,9.999999999998911,P1) p(11.000000000000153,9.999999999998911,P2) p(10.500000000000153,10.86602540378335,P3) p(11.500000000000153,10.86602540378335,P4) p(12.000000000000153,9.999999999998911,P5) p(10.38466666255752,10.923055555595093,P6,nolabel) print(_P6,9.8,11.2) p(9.392943771028182,10.794658879560659,P7) p(9.77761043358555,11.717714435156841,P8) p(8.785887542056214,11.589317759122407,P9) p(10.769333325114888,11.846111111191275,P10) p(11.46511370700929,11.127856518326825,P11) p(11.739250239867552,12.089547300934441,P12) p(12.435030621761957,11.37129270806999,P13) p(14.500000000000153,10.86602540378335,P14) p(13.404947536514621,11.614728897813157,P15) p(14.374864451267285,11.858165087556323,P16) p(13.679084069372884,12.576419680420774,P17) p(14.649000984125546,12.81985587016394,P18) p(9.258573216575096,13.532657218173405,P19) p(10.174192586675147,13.934703445736336,P20) p(10.064565148190319,12.940730697251121,P21) p(10.980184518290372,13.342776924814052,P22) p(11.089811956775199,14.33674967329927,P23) p(9.981892467802812,12.842143452341489,P24) p(9.022230379315655,12.560987488647907,P25) p(9.745549630543373,11.870473722815987,P26) p(10.70521171903053,12.151629686509567,P27) p(11.053510164537755,13.089013382152528,P28) p(11.691159035304283,12.318686232423167,P29) p(12.03945748081151,13.25606992806612,P30) p(13.727042628590526,14.548915607502845,P31) p(13.025404797085265,13.423126473979709,P32) p(14.011352113359015,13.590183019893313,P33) p(13.6630536678518,12.65279932425032,P34,nolabel) print(_P34,13.1,12.9) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P14,P4) s(P4,P5) s(P2,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P25,P9) s(P26,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P12,P13) s(P11,P13) s(P15,P13) s(P16,P15) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P33,P18) s(P34,P18) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P31,P22) s(P20,P23) s(P22,P23) s(P19,P24) s(P19,P25) s(P24,P25) s(P24,P26) s(P25,P26) s(P24,P27) s(P26,P27) s(P21,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P28,P30) s(P29,P30) s(P32,P30) s(P33,P32) s(P32,P34) s(P33,P34) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) pen(2) color(red) s(P14,P16) abstand(P14,P16,A0) print(abs(P14,P16):,8.79,16.349) print(A0,10.09,16.349) color(red) s(P3,P6) abstand(P3,P6,A1) print(abs(P3,P6):,8.79,16.049) print(A1,10.09,16.049) color(red) s(P17,P34) abstand(P17,P34,A2) print(abs(P17,P34):,8.79,15.749) print(A2,10.09,15.749) print(min=0.9999999999999877,8.79,15.449) print(max=3,8.79,15.149) color(blue) color(orange) color(red) \geooff \geoprint() Beim #1119-1 lassen sich zwei und beim #1119-2 eine Kante noch auf Länge 1 bringen. \geo ebene(484.76,426.01) x(8.71,18.41) y(10,18.52) form(.) #//Eingabe war: # ##1119-1 # # # # #P[1]=[8.526512829121202e-14,-1.1368683772161603e-13]; #P[2]=[50.000000000000085,-1.1368683772161603e-13]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); M(6,1,3,blauerWinkel); L(7,1,6); L(8,7,6); #L(9,7,8); L(10,8,6); N(11,10,3); L(12,10,11); L(13,12,11); L(14,4,5); #L(15,14,5); L(16,14,15); L(17,16,15); N(18,13,16); N(19,18,17); L(20,19,17); #L(21,19,20); L(22,21,20); L(23,21,22); L(24,23,22); L(25,23,24); L(26,25,24); #L(27,25,26); L(28,27,26); M(29,28,27,gruenerWinkel); L(30,29,28); L(31,29,30); #L(32,31,30); L(33,29,31); N(34,27,33); L(35,34,33); L(36,34,35); #A(9,32,ab(32,9,[1,36])); N(71,69,12); N(72,35,47); N(73,71,13); N(74,72,48); #L(75,71,73); L(76,72,74); N(77,76,75); N(78,75,76); N(79,36,77); N(80,70,78); #A(77,36); A(79,73); A(79,18); A(70,78); A(80,53); A(80,74); R(36,77); R(79,73); #R(79,18); # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(10.000000000000002,9.999999999999998,P1) p(11.000000000000002,9.999999999999998,P2) p(10.500000000000002,10.866025403784436,P3) p(11.500000000000002,10.866025403784436,P4) p(12.000000000000002,9.999999999999998,P5) p(10.342040539050625,10.93968519709845,P6) p(9.357229017277865,10.766058394491187,P7) p(9.699269556328488,11.705743591589641,P8) p(8.71445803455573,11.532116788982377,P9) p(10.684081078101247,11.879370394196904,P10) p(11.435449055990137,11.219486948577027,P11) p(11.631240894489313,12.200132427828889,P12) p(12.382608872378203,11.540248982209011,P13) p(12.500000000000002,10.866025403784436,P14) p(13.000000000000002,9.999999999999998,P15) p(13.500000000000002,10.866025403784436,P16) p(14.000000000000002,9.999999999999998,P17) p(13.332790176036848,11.85194673673662,P18) p(13.832790176036848,10.98592133295218,P19) p(14.770228008488033,10.637768621790505,P20) p(14.60301818452488,11.623689954742689,P21) p(15.540456016976062,11.275537243581011,P22) p(15.373246193012909,12.261458576533196,P23) p(16.310684025464095,11.91330586537152,P24) p(16.14347420150094,12.899227198323704,P25) p(17.080912033952124,12.551074487162026,P26) p(16.91370220998897,13.53699582011421,P27) p(17.851140042440154,13.188843108952534,P28) p(17.000108795190293,13.713958159398002,P29) p(17.880387392410547,14.188415313708003,P30) p(17.029356145160683,14.713530364153472,P31) p(17.909634742380938,15.187987518463473,P32) p(16.149077547940433,14.239073209843472,P33) p(15.953285728796162,13.258427726727286,P34) p(15.201917737883216,13.918311157517484,P35) p(15.006125918738945,12.937665674401298,P36) p(16.624092776936667,16.720104307445844,P37) p(15.624092776936664,16.72010430744585,P38) p(16.124092776936667,15.85407890366141,P39) p(15.124092776936664,15.854078903661414,P40) p(14.624092776936664,16.72010430744585,P41) p(16.282052237886038,15.780419110347404,P42) p(17.266863759658808,15.954045912954648,P43) p(16.924823220608182,15.014360715856203,P44) p(15.940011698835413,14.840733913248958,P45) p(15.18864372094653,15.500617358868823,P46) p(14.992851882447354,14.519971879616959,P47) p(14.241483904558468,15.179855325236831,P48) p(14.124092776936667,15.854078903661412,P49) p(13.624092776936664,16.72010430744585,P50) p(13.124092776936665,15.854078903661417,P51) p(12.624092776936665,16.72010430744585,P52) p(13.291302600899819,14.868157570709226,P53) p(12.791302600899822,15.734182974493665,P54) p(11.853864768448634,16.082335685655345,P55) p(12.021074592411788,15.09641435270316,P56) p(11.083636759960603,15.444567063864838,P57) p(11.250846583923758,14.458645730912654,P58) p(10.313408751472574,14.80679844207433,P59) p(10.480618575435727,13.820877109122147,P60) p(9.543180742984543,14.169029820283821,P61) p(9.710390566947698,13.183108487331639,P62) p(8.772952734496513,13.531261198493315,P63) p(9.623983981746374,13.006146148047847,P64) p(8.743705384526121,12.531688993737845,P65) p(9.594736631775982,12.006573943292377,P66) p(10.475015228996234,12.48103109760238,P67) p(10.670807048140505,13.461676580718564,P68) p(11.422175039053446,12.801793149928374,P69) p(11.617966858197722,13.78243863304455,P70) p(12.422121897386782,12.812102393804256,P71) p(14.201970879549881,13.908001913641598,P72) p(13.17348987527567,12.15221894818438,P73) p(13.45060290166099,14.567885359261474,P74) p(13.369281713774848,13.13286442743624,P75) p(13.254811063161815,13.587239880009612,P76) p(14.254757921286409,13.597549144132346,P77) p(12.369334855650253,13.122555163313505,P78) p(14.05896609501205,12.616903662439727,P79) p(12.565126681924616,14.103200645006126,P80) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P65,P9) s(P66,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P12,P13) s(P11,P13) s(P4,P14) s(P5,P14) s(P14,P15) s(P5,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P15,P17) s(P13,P18) s(P16,P18) s(P18,P19) s(P17,P19) s(P19,P20) s(P17,P20) s(P19,P21) s(P20,P21) s(P21,P22) s(P20,P22) s(P21,P23) s(P22,P23) s(P23,P24) s(P22,P24) s(P23,P25) s(P24,P25) s(P25,P26) s(P24,P26) s(P25,P27) s(P26,P27) s(P27,P28) s(P26,P28) s(P28,P29) s(P29,P30) s(P28,P30) s(P29,P31) s(P30,P31) s(P31,P32) s(P30,P32) s(P43,P32) s(P44,P32) s(P29,P33) s(P31,P33) s(P27,P34) s(P33,P34) s(P34,P35) s(P33,P35) s(P34,P36) s(P35,P36) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P38,P41) s(P40,P41) s(P37,P42) s(P37,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P42,P45) s(P44,P45) s(P39,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P40,P49) s(P41,P49) s(P41,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P48,P53) s(P51,P53) s(P52,P54) s(P53,P54) s(P52,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P55,P57) s(P56,P57) s(P56,P58) s(P57,P58) s(P57,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P59,P61) s(P60,P61) s(P60,P62) s(P61,P62) s(P61,P63) s(P62,P63) s(P63,P64) s(P63,P65) s(P64,P65) s(P64,P66) s(P65,P66) s(P64,P67) s(P66,P67) s(P62,P68) s(P67,P68) s(P67,P69) s(P68,P69) s(P68,P70) s(P69,P70) s(P78,P70) s(P69,P71) s(P12,P71) s(P35,P72) s(P47,P72) s(P71,P73) s(P13,P73) s(P72,P74) s(P48,P74) s(P71,P75) s(P73,P75) s(P72,P76) s(P74,P76) s(P76,P77) s(P75,P77) s(P36,P77) s(P75,P78) s(P76,P78) s(P36,P79) s(P77,P79) s(P73,P79) s(P18,P79) s(P70,P80) s(P78,P80) s(P53,P80) s(P74,P80) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) color(#008000) m(P27,P28,MA11) m(P28,P29,MB11) b(P28,MA11,MB11) pen(2) color(red) s(P36,P77) abstand(P36,P77,A0) print(abs(P36,P77):,8.71,18.52) print(A0,10.01,18.52) color(red) s(P79,P73) abstand(P79,P73,A1) print(abs(P79,P73):,8.71,18.22) print(A1,10.01,18.22) color(red) s(P79,P18) abstand(P79,P18,A2) print(abs(P79,P18):,8.71,17.92) print(A2,10.01,17.92) print(min=0.9999999999999806,8.71,17.62) print(max=1.054746677002363,8.71,17.32) color(blue) color(orange) color(red) \geooff \geoprint() \geo ebene(484.42,486.09) x(4.72,14.41) y(10,19.72) form(.) #//Eingabe war: # ##1119-2 # # # # #P[1]=[-199.99999999999991,-1.1368683772161603e-13]; #P[2]=[-149.99999999999991,-1.1368683772161603e-13]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); M(6,1,3,blauerWinkel); L(7,1,6); L(8,7,6); #L(9,7,8); L(10,8,6); N(11,10,3); L(12,10,11); L(13,12,11); L(14,12,13); #L(15,14,13); L(16,4,5); L(17,16,5); L(18,16,17); L(19,18,17); A(15,18); #R(15,18); N(20,15,19); L(21,20,19); L(22,20,21); L(23,22,21); L(24,22,23); #L(25,24,23); L(26,24,25); L(27,26,25); L(28,26,27); L(29,28,27); #M(30,29,28,gruenerWinkel); L(31,30,29); L(32,30,31); L(33,32,31); L(34,30,32); #N(35,28,34); L(36,35,34); L(37,35,36); L(38,37,36); A(9,33,ab(33,9,[1,38])); #N(75,59,73); N(76,75,74); L(77,37,38); L(78,77,38); A(77,15); A(78,14); #A(78,74); A(76,38); A(76,51); A(75,52); R(76,51); R(77,15); R(78,14); R(78,74); #R(76,38); R(75,52); # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(6.000000000000002,9.999999999999998,P1) p(7.000000000000002,9.999999999999998,P2) p(6.500000000000002,10.866025403784436,P3) p(7.500000000000002,10.866025403784436,P4) p(8.000000000000002,9.999999999999998,P5) p(6.343662623832493,10.939093180137393,P6) p(5.358552761396547,10.76716715263885,P7) p(5.702215385229039,11.706260332776246,P8) p(4.717105522793092,11.5343343052777,P9) p(6.687325247664985,11.878186360274789,P10) p(7.436731031445479,11.21607536411452,P11) p(7.635433082355046,12.19613530869155,P12) p(8.38483886613554,11.534024312531281,P13) p(8.583540917045108,12.514084257108312,P14) p(9.332946700825602,11.851973260948043,P15) p(8.500000000000002,10.866025403784436,P16) p(9.000000000000002,9.999999999999998,P17) p(9.500000000000002,10.866025403784436,P18) p(10.000000000000002,9.999999999999998,P19) p(9.832946723438935,10.985947870219418,P20) p(10.770329264136649,10.637646316397019,P21) p(10.603275987575584,11.62359418661644,P22) p(11.540658528273298,11.275292632794041,P23) p(11.373605251712231,12.261240503013461,P24) p(12.310987792409946,11.912938949191062,P25) p(12.14393451584888,12.898886819410482,P26) p(13.081317056546593,12.550585265588083,P27) p(12.914263779985529,13.536533135807504,P28) p(13.851646320683242,13.188231581985104,P29) p(12.999425853894316,13.71141441425893,P30) p(13.878625710861805,14.18786757198626,P31) p(13.026405244072878,14.711050404260087,P32) p(13.905605101040369,15.187503561987418,P33) p(12.147205387105389,14.234597246532758,P34) p(11.955243761709177,13.253194814104937,P35) p(11.20130513658895,13.910139674463718,P36) p(11.009343511192737,12.928737242035897,P37) p(10.255404886072508,13.585682102394678,P38) p(12.622710623833463,16.72183786726512,P39) p(11.622710623833457,16.721837867265123,P40) p(12.12271062383346,15.855812463480675,P41) p(11.122710623833463,15.855812463480678,P42) p(10.622710623833457,16.72183786726512,P43) p(12.279048000000971,15.782744687127717,P44) p(13.264157862436917,15.954670714626266,P45) p(12.920495238604428,15.015577534488848,P46) p(11.935385376168483,14.843651506990316,P47) p(11.185979592387984,15.505762503150589,P48) p(10.987277541478413,14.52570255857357,P49) p(10.237871757697924,15.187813554733832,P50) p(10.03916970678835,14.207753610156814,P51) p(9.28976392300786,14.869864606317076,P52) p(10.122710623833457,15.855812463480682,P53) p(9.622710623833461,16.72183786726512,P54) p(9.12271062383346,15.855812463480685,P55) p(8.62271062383346,16.72183786726512,P56) p(8.789763900394526,15.7358899970457,P57) p(7.852381359696812,16.0841915508681,P58) p(8.019434636257877,15.098243680648679,P59) p(7.082052095560162,15.446545234471078,P60) p(7.249105372121228,14.460597364251658,P61) p(6.3117228314235145,14.808898918074057,P62) p(6.478776107984582,13.822951047854634,P63) p(5.541393567286866,14.171252601677036,P64) p(5.708446843847932,13.185304731457615,P65) p(4.771064303150219,13.533606285280014,P66) p(5.623284769939146,13.010423453006187,P67) p(4.744084912971655,12.533970295278857,P68) p(5.596305379760582,12.01078746300503,P69) p(6.475505236728072,12.487240620732361,P70) p(6.667466862124283,13.46864305316018,P71) p(7.421405487244513,12.811698192801396,P72) p(7.613367112640724,13.793100625229219,P73) p(8.367305737760958,13.136155764870425,P74) p(8.513460945166669,14.228796726484163,P75) p(9.267399570286898,13.571851866125378,P76) p(10.063443260676298,12.604279669966857,P77) p(9.30950463555607,13.261224530325638,P78) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P1,P6) s(P1,P7) s(P6,P7) s(P7,P8) s(P6,P8) s(P7,P9) s(P8,P9) s(P68,P9) s(P69,P9) s(P8,P10) s(P6,P10) s(P10,P11) s(P3,P11) s(P10,P12) s(P11,P12) s(P12,P13) s(P11,P13) s(P12,P14) s(P13,P14) s(P14,P15) s(P13,P15) s(P18,P15) s(P4,P16) s(P5,P16) s(P16,P17) s(P5,P17) s(P16,P18) s(P17,P18) s(P18,P19) s(P17,P19) s(P15,P20) s(P19,P20) s(P20,P21) s(P19,P21) s(P20,P22) s(P21,P22) s(P22,P23) s(P21,P23) s(P22,P24) s(P23,P24) s(P24,P25) s(P23,P25) s(P24,P26) s(P25,P26) s(P26,P27) s(P25,P27) s(P26,P28) s(P27,P28) s(P28,P29) s(P27,P29) s(P29,P30) s(P30,P31) s(P29,P31) s(P30,P32) s(P31,P32) s(P32,P33) s(P31,P33) s(P45,P33) s(P46,P33) s(P30,P34) s(P32,P34) s(P28,P35) s(P34,P35) s(P35,P36) s(P34,P36) s(P35,P37) s(P36,P37) s(P37,P38) s(P36,P38) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P40,P43) s(P42,P43) s(P39,P44) s(P39,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P46,P47) s(P41,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P50,P52) s(P51,P52) s(P55,P52) s(P42,P53) s(P43,P53) s(P43,P54) s(P53,P54) s(P53,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P52,P57) s(P56,P57) s(P56,P58) s(P57,P58) s(P57,P59) s(P58,P59) s(P58,P60) s(P59,P60) s(P59,P61) s(P60,P61) s(P60,P62) s(P61,P62) s(P61,P63) s(P62,P63) s(P62,P64) s(P63,P64) s(P63,P65) s(P64,P65) s(P64,P66) s(P65,P66) s(P66,P67) s(P66,P68) s(P67,P68) s(P67,P69) s(P68,P69) s(P67,P70) s(P69,P70) s(P65,P71) s(P70,P71) s(P70,P72) s(P71,P72) s(P71,P73) s(P72,P73) s(P72,P74) s(P73,P74) s(P59,P75) s(P73,P75) s(P52,P75) s(P75,P76) s(P74,P76) s(P38,P76) s(P51,P76) s(P37,P77) s(P38,P77) s(P15,P77) s(P77,P78) s(P38,P78) s(P14,P78) s(P74,P78) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) color(#008000) m(P28,P29,MA11) m(P29,P30,MB11) b(P29,MA11,MB11) pen(2) color(red) s(P15,P18) abstand(P15,P18,A0) print(abs(P15,P18):,4.72,19.722) print(A0,6.02,19.722) color(red) s(P76,P51) abstand(P76,P51,A1) print(abs(P76,P51):,4.72,19.422) print(A1,6.02,19.422) color(red) s(P77,P15) abstand(P77,P15,A2) print(abs(P77,P15):,4.72,19.122) print(A2,6.02,19.122) color(red) s(P78,P14) abstand(P78,P14,A3) print(abs(P78,P14):,4.72,18.822) print(A3,6.02,18.822) color(red) s(P78,P74) abstand(P78,P74,A4) print(abs(P78,P74):,4.72,18.522) print(A4,6.02,18.522) color(red) s(P76,P38) abstand(P76,P38,A5) print(abs(P76,P38):,4.72,18.222) print(A5,6.02,18.222) color(red) s(P75,P52) abstand(P75,P52,A6) print(abs(P75,P52):,4.72,17.922) print(A6,6.02,17.922) print(min=0.9504635005291447,4.72,17.622) print(max=1.0486133813966867,4.72,17.322) color(blue) color(orange) color(red) \geooff \geoprint() \quoteon(2018-04-09 20:22 - haribo in Beitrag No. 1114) \quoteon(2018-04-09 18:02 - Slash in Beitrag No. 1111) \quoteon(2018-04-09 17:37 - haribo in Beitrag No. 1109) du suchst doch beispiele, in #609 hatten wir auch schonmal kleine abstände 0,024 hab ich damals eingetragen, daneben ist aber noch ein halber abstand 0,0124 bei 220 hölzern ---> h x a =2,7 http://www.matheplanet.com/matheplanet/nuke/html/viewtopic.php?rd2&topic=216644&start=600#p1635739 \quoteoff Wurde die 2. Version schon programmiert? Sind diese Graphen starr? \quoteoff ansich sind es zehn um ein holz erweiterte kites, die dadurch so beweglich wurden dass ich sie in einen 36 grad winkel schieben konnte, aber ob der ring dann starr ist??? sehr gute frage, dass hat uns damals noch gar nicht interessiert \quoteoff Das war #612-3 starr. Mit dem neuen 4/11-Rekord eingeben muss ich nochmal Anlauf nehmen.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1123, eingetragen 2018-04-14

\quoteon(2018-04-14 06:00 - StefanVogel in Beitrag No. 1122) Mit dem neuen 4/11-Rekord eingeben muss ich nochmal Anlauf nehmen. \quoteoff habe die grundlage gesucht+gefunden: die kerne entsprechen immer noch #518-2, (er wurde auch in #803 benutzt) der gelbe kern entspricht ~180° gedreht dem #518-2 kern, p100 ist geöffnet, unrelevant für die stabilität des kerns spiegelachse der kerne: p94-p99 die äusseren vier einkürzungen/stutzungen haben alle ne unbewegliche basis von l=2, also verändern sie auch nicht die kerne, sondern sparen jeweils nur zwo hölzer hier in dieser gespiegelt und etwas gedrehten version des 4/11-771 liegt der rote kern exakt wie #518-2, jetzt habe ich alle stutzungen in weiss dargestellt http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-4-11-771s.PNG


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1124, vom Themenstarter, eingetragen 2018-04-14

@ haribo Hattest du schon probiert am unteren schwarzen Dreieck zu stutzen?


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1125, eingetragen 2018-04-14

unten beim letzten bild? da hab ich schon sehrviel herumgesucht um diese lösung zu finden, die situation ist dort symetrisch, es ergibt aber überschneidungen wenn man beide seiten stutzt gut wäre eine stützenbasis die nicht mehr starre 2 breit ist, dann wäre der kern evtl. neu beweglich... http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-11er-versuch.PNG ungefähr so... ich wage aber zu bezweifeln dass man mit dem grünen winkel beide unteren überschneidungen gleichzeitig auf die spiegelachse schieben kann haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1126, vom Themenstarter, eingetragen 2018-04-14

Ich meinte nur zwei Kanten einsparen wie an der Seite gegenüber, also so eine weiße Konstruktion. Aber das hast du bestimmt schon probiert.


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1127, eingetragen 2018-04-14

jepp http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-11er-versuch2.PNG


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1128, vom Themenstarter, eingetragen 2018-04-14

Ich dachte eher an den Doppelkite so lassen, aber geht wahrscheinlich auch nicht. Ich habe mal das hier probiert, müsste aber noch getestet werden, ob das unten hinhaut. Wenn nicht, vielleicht kann man es dann noch retten. ;-) http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_11_slash_neu.png


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1129, eingetragen 2018-04-14

das wären 761 hölzer, es geht unten rechts aber nicht zusammen, das stutzen führt nicht wirklich zu ner elastizität der verbindung sondern nur zu einem anderen passerkreis als die ungestutzten doppelkites... die "rettung" geht dann in richtung dieser gekoppelten-kette, welche derart dann auch mit kleinen dreiecken auskommt, auch oben nicht den koppelkite braucht... aber eben leider keine hölzer spart, hier noch ohne stutzen sind es 791 also auch mit diversem stutzen werden es mehr als 771 sein mann kann sie auch nach links noch erweitern, spart aber auch nix soweit ich sehe http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-4-11-791.PNG


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1130, vom Themenstarter, eingetragen 2018-04-15

Wahrscheinlich lässt sich die Konstruktion unten nicht justieren, aber man weiß ja nie. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_11_slash_neu2.png


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 3936
Wohnort: Raun
  Beitrag No.1131, eingetragen 2018-04-15

\quoteon(2018-04-14 06:36 - haribo in Beitrag No. 1123) \quoteon(2018-04-14 06:00 - StefanVogel in Beitrag No. 1122) Mit dem neuen 4/11-Rekord eingeben muss ich nochmal Anlauf nehmen. \quoteoff habe die grundlage gesucht+gefunden: die kerne entsprechen immer noch #518-2, (er wurde auch in #803 benutzt) der gelbe kern entspricht ~180° gedreht dem #518-2 kern, \quoteoff Danke. Bei so großen Graphen ist es ganz gut, wenn man gleich den richtigen Anfang erwischt. Also zu dem 4/11-771 Rekord sagt das Streichholzprogramm, dass alles passt: \geo ebene(683.84,645.71) x(-1.65,25.7) y(9.32,35.15) form(.) #//Eingabe war: # ##1123 4/11-771 mit No.803 Kern 4/11 mit 813 # # # # # # # # #P[1]=[-56.28954173740843,241.23439081057285]; #P[2]=[-31.29810861301945,240.57996710287603]; D=ab(1,2); A(2,1); #M(3,1,2,gruenerWinkel); N(4,3,2); L(5,3,4); #M(6,1,3,blauerWinkel); N(7,6,3); N(8,7,5); L(9,8,5); L(10,8,9); L(11,10,9); #L(12,6,7); #Q(13,12,10,ab(11,5,8,9,10),D); L(17,16,13); #N(18,6,14); N(19,1,18); L(20,19,18); #Q(21,20,17,ab(11,5,[8,10]),ab(5,11,[8,10])); L(28,25,27); #N(29,19,22); N(30,1,29); L(31,30,29); #Q(32,31,24,ab(13,12,[14,17]),D); #N(37,30,33); N(38,1,37); L(39,38,37); #Q(40,39,36,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(48,38,41); N(49,1,48); L(50,49,48); #Q(51,50,43,ab(13,12,[14,17]),D); #N(56,49,52); N(57,1,56); L(58,57,56); #Q(59,58,55,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(67,57,60); N(68,1,67); L(69,68,67); #Q(70,69,62,ab(13,12,[14,17]),D); #N(75,68,71); N(76,1,75); L(77,76,75); #Q(78,77,74,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(86,76,79); N(87,1,86); L(88,87,86); # #N(89,2,87); #Q(90,89,88,D,ab(71,69,[70,74])); #L(95,2,89); N(96,4,95); L(97,96,95); N(98,11,97); L(99,98,97); L(100,98,99); # #A(81,91); R(81,91); #A(11,96); R(11,96); # #Z(100);M(100,66,65,orangerWinkel,2); L(104,102,100); #Q(105,103,104,ab(66,103,[100,104]),ab(101,102,103)); #A(109,110,ab(109,110,66,[100,110],"gespiegelt")); Z(47); #Q(47,44,111,D,ab(112,66,[100,110],[112,120])); A(132,46); R(132,46); #A(94,99,ab(94,99,[1,139],"gespiegelt")); N(277,98,236); # #Q(278,28,277,ab(17,21,[25,28]),ab(66,111,[100,120])); #M(303,282,281,vierterWinkel,2); L(307,305,303); #Q(308,306,307,ab(282,306,[303,307]),ab(305,303,307)); #A(312,313,ab(313,312,282,[303,313])); Z(167); #Q(167,314,166,ab(112,66,[100,110],[112,120]),D); A(335,164); R(335,164); # #Z(224); M(224,221,217,fuenfterWinkel); #Q(343,224,85,ab(282,316,[303,313],[315,323],"gespiegelt"),ab(278,277,[283, #302])); A(223,355); R(223,355); # # # # # # # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: nolabel() p(7.748418330503666,19.649375632422895,P1) p(8.748075655479225,19.623198684115025,P2) p(8.606818988362676,20.162355466906888,P3) p(9.606476313338232,20.13617851859901,P4) p(9.129317553078625,21.01499563126098,P5) p(8.068128702770807,20.59689095043354,P6) p(8.926529360629816,21.109870784917526,P7) p(9.449027925345764,21.96251094927162,P8) p(10.109745075084302,21.211875986029575,P9) p(10.429455447351442,22.15939130404022,P10) p(11.090172597089978,21.408756340798178,P11) p(8.053075463408042,21.596777644006707,P12) p(9.655854074276,22.793063865838334,P13) p(7.935762986973284,22.589872696291607,P14) p(8.854464768842021,22.19492075492252,P15) p(8.737152292407265,23.18801580720742,P16) p(9.538541597841242,23.786158918123235,P17) p(7.950816226336043,21.589986002718437,P18) p(7.6311058540689025,20.642470684707796,P19) p(6.9703887043303645,21.393105647949838,P20) p(7.6007644516797175,23.291164239551726,P21) p(6.306099162068429,22.14058100141738,P22) p(7.285576578005041,22.34213494375078,P23) p(6.621287035743105,23.08961029721832,P24) p(7.870869755029579,24.253995026918997,P25) p(8.569653024760479,23.538661578837477,P26) p(8.839758328110342,24.50149236620475,P27) p(8.140975058379441,25.21682581428627,P28) p(6.966816311806959,21.389946038175328,P29) p(7.084128788241719,20.396850985890428,P30) p(6.165427006372981,20.79180292725951,P31) p(5.686774060052241,22.733681233688234,P32) p(5.204905797580208,21.070009698311676,P33) p(5.926100533212611,21.76274208047387,P34) p(4.9655793244198385,22.04094885152604,P35) p(4.726252851259469,23.0118880047404,P36) p(6.123607579448947,20.675057756942593,P37) p(6.787897121710895,19.927582403475064,P38) p(5.808419705774285,19.726028461141645,P39) p(4.313724751479013,21.054895269216953,P40) p(4.85932976018089,19.411023262496407,P41) p(5.06107223852748,20.39046187631564,P42) p(4.111982283033253,20.075456666534063,P43) p(3.5694540644316755,21.72277336019021,P44) p(4.519988815949972,22.0333916339051,P45) p(3.7757181143219034,22.70126972795193,P46) p(3.1282732567931557,20.82535512159049,P47) p(5.838807176117498,19.612577204829826,P48) p(6.799328384910271,19.33437043377766,P49) p(6.078133649277868,18.641638051615466,P50) p(4.125771256702399,19.07555173895087,P51) p(5.402152912992881,17.90471875876746,P52) p(5.101952452990133,18.85859489528317,P53) p(4.425971716705148,18.12167560243516,P54) p(3.449790520417415,18.33863244610286,P55) p(6.1233476486252725,18.597451140929664,P56) p(7.072437594218668,18.912456339574902,P57) p(6.870695125772909,17.933017736892012,P58) p(5.040558291282259,17.12642046003041,P59) p(6.762427783342995,16.93889592214134,P60) p(5.955626702517968,17.529719112096792,P61) p(5.847359366097669,16.53559728371054,P62) p(4.117963161210684,16.740650806003277,P63) p(4.2451744148815225,17.732526464918777,P64) p(3.3225792757782635,17.3467567990395,P65) p(3.195368031139111,16.354881151976137,P66) p(6.964170251788751,17.918334524824232,P67) p(7.640150988073749,18.65525381767223,P68) p(7.940351448076479,17.701377681156515,P69) p(6.746087729971112,16.097091493589858,P70) p(8.336461815236742,16.783174774916198,P71) p(7.3432195890237955,16.899234587373186,P72) p(7.739329956184058,15.981031681132869,P73) p(7.1421980971313745,15.178888587349544,P74) p(8.036261355234005,17.73705091143191,P75) p(8.144528697663922,18.731172726182578,P76) p(8.95132977247933,18.140349549862705,P77) p(8.895507511463705,16.14112873285046,P78) p(9.803062214879066,17.616372597541538,P79) p(8.923418627076162,17.140739141772496,P80) p(9.775151084371254,16.616762189035413,P81) p(8.873842363153138,15.141363449722125,P82) p(8.018852797128293,15.660008673163176,P83) p(7.997187655986972,14.660243376971664,P84) p(8.85217721484257,14.141598166593788,P85) p(8.99626114006367,18.207195773861425,P86) p(8.600150772903412,19.12539868010174,P87) p(9.593392999116356,19.00933886764475,P88) p(9.599808097878968,19.099221731793868,P89) p(10.593050324091914,18.98316191933688,P90) p(10.547710519635578,17.251704642320817,P91) p(10.070551759375967,18.130521754982784,P92) p(11.070209084351525,18.104344806674913,P93) p(11.547367844611136,17.225527694012946,P94) p(9.627719228386765,20.098832140299994,P95) p(10.486119886245769,20.61181197478399,P96) p(10.501173125608544,19.611925281210816,P97) p(11.105225836452757,20.408869647225007,P98) p(11.493373547401822,19.487272471401965,P99) p(2.418599129003738,16.984666887504822,P100) p(2.261573134162515,15.9970724176215,P101) p(1.484804232027141,16.626858153150184,P102) p(1.3277782371859193,15.639263683266858,P103) p(1.6418302268683629,17.614452623033507,P104) p(0.6463394944918921,17.519593771298105,P105) p(0.002492368297755121,16.754439618142314,P106) p(0.9870588658389057,16.57942872728248,P107) p(0.3432117396447687,15.814274574126692,P108) p(-0.6413547578963783,15.989285464986526,P109) p(1.0619346853034468,18.429143460635807,P110) p(-1.6205505878151474,19.716922450117906,P111) p(-0.7616286413577953,19.20481592809938,P112) p(-1.6345868720982093,18.717020963608597,P113) p(-0.7756649256408519,18.204914441590073,P114) p(-1.648623156381264,17.71711947709929,P115) p(0.09729330509956213,18.69270940608086,P116) p(0.3513591908736231,17.725522492560085,P117) p(-0.14499778351137493,16.857403978773306,P118) p(-0.6486319827538196,17.721320984829685,P119) p(-1.1449889571388212,16.853202471042906,P120) p(-0.6353406803161405,19.888274246623823,P121) p(-1.2763406428239197,20.65581515632514,P122) p(-0.2911307353249253,20.827166952831107,P123) p(-0.932130697832692,21.594707862532367,P124) p(0.34986922718283964,20.05962604312985,P125) p(0.9327875267573713,20.87215681548321,P126) p(0.7794317517476639,21.860327856483277,P127) p(0.0003284144623378893,21.233432339007788,P128) p(-0.15302736054736776,22.221603380007856,P129) p(0.6260759767379565,22.848498897483356,P130) p(1.3450006671847046,19.961069373544156,P131) p(3.33453730668338,21.803851489352212,P132) p(2.384002569745814,21.493233212563744,P133) p(2.5902666196360338,22.471729580325466,P134) p(2.177738519855594,20.51473684480202,P135) p(1.2818794981617483,20.959075244278985,P136) p(0.9539777374498488,21.903787070881165,P137) p(1.9360730588988915,21.715402412302225,P138) p(1.6081712981869956,22.660114238904406,P139) p(15.226327277104973,19.827894642261437,P140) p(14.229057863515,19.75404535846052,P141) p(14.344425857265875,20.299328503673394,P142) p(13.347156443675901,20.225479219872476,P143) p(13.781835794648007,21.126064508359057,P144) p(14.86176709458092,20.759074470929367,P145) p(13.979865674741825,21.230508332341316,P146) p(13.417275612123957,22.057244337026987,P147) p(12.793130316267915,21.275936043418902,P148) p(12.428570133743865,22.20711587208683,P149) p(11.804424837887815,21.425807578478754,P150) p(14.829090084848318,21.758540434849564,P151) p(13.171052329086354,22.876981671780616,P152) p(14.898879907819016,22.756102152544123,P153) p(14.000071206967338,22.31776105331509,P154) p(14.069861029938032,23.315322771009647,P155) p(13.240842152057054,23.874543389475175,P156) p(14.931556917551625,21.756636188623922,P157) p(15.296117100075678,20.825456359955993,P158) p(15.920262395931719,21.606764653564085,P159) p(15.200032234695767,23.472580430870632,P160) p(16.548126786587375,22.38508740599176,P161) p(15.560147315313746,22.539672542217346,P162) p(16.188011705969398,23.31799529464504,P163) p(14.884289780802039,24.421425361725596,P164) p(14.220437193376412,23.6735619101729,P165) p(13.904694739482675,24.62240684102787,P166) p(13.7361381923128,25.608098826592403,P167) p(15.92398149073134,21.603779112383677,P168) p(15.854191667760638,20.606217394689118,P169) p(16.75300036861232,21.044558493918146,P170) p(17.13844450984169,23.007065261802516,P171) p(17.699151761963037,21.36828297686698,P172) p(16.945722439227005,22.02581187786033,P173) p(17.891873832577723,22.349536360809168,P174) p(18.084595903192408,23.330789744751357,P175) p(16.800343061111356,20.929941877637955,P176) p(16.172478670455693,20.151619125210274,P177) p(17.16045814172932,19.99703398898467,P178) p(18.59003883325059,21.395711595307716,P179) p(18.123498483999718,19.72767679275686,P180) p(17.875248477068993,20.696372802797395,P181) p(18.83828882976036,20.427015595918384,P182) p(19.30159151859923,22.098344341465435,P183) p(18.33731735380404,22.36325066626369,P184) p(19.04887005357014,23.065883416187248,P185) p(19.785093202322237,21.223000910669832,P186) p(17.135519012726093,19.882261928982462,P187) p(16.189367619375375,19.55853744603363,P188) p(16.942796942111407,18.901008545040284,P189) p(18.872229535064122,19.427591747632032,P190) p(17.653172305674904,18.19718552549486,P191) p(17.907513238587764,19.16430014633616,P192) p(18.61788860215126,18.460477126790728,P193) p(19.58260489862761,18.723768728086615,P194) p(16.89974298293888,18.85471442648822,P195) p(15.936702640668479,19.12407162271603,P196) p(16.18495263717824,18.155375623326698,P197) p(18.051494240453778,17.437028601865897,P198) p(16.340534653338157,17.167552645132922,P199) p(17.118223444168112,17.79620212650312,P200) p(17.27380545497593,16.80837913440252,P201) p(18.9914467236852,17.09572327042925,P202) p(18.81704955995373,18.080398676383915,P203) p(19.75700205277212,17.739093333539614,P204) p(19.931399206916623,16.754417938992606,P205) p(16.092284656828397,18.136248644522254,P206) p(15.381909293264892,18.840071664067665,P207) p(15.127568360352047,17.87295704322636,P208) p(16.3970257435272,16.327486903656496,P209) p(14.775724505316944,16.936898336908193,P210) p(15.762297051939623,17.10022197344143,P211) p(15.41045319690452,16.164163267123264,P212) p(16.045181888492095,15.39142819733833,P213) p(15.030065438229794,17.9040129577495,P214) p(14.874483422069876,18.89183593594327,P215) p(14.096794636592026,18.263186468479894,P216) p(14.247953139945517,16.2689068725195,P217) p(13.271035866255067,17.69916301753872,P218) p(14.172373903127312,17.266046671625922,P219) p(13.346615117931814,16.702023219558523,P220) p(14.317300915089156,15.271314327397686,P221) p(15.14656752075653,15.830167548319316,P222) p(15.21591528936245,14.8325749898071,P223) p(13.499878120985567,14.695276155329307,P224) p(14.048724651732906,18.32781248500211,P225) p(14.400568506768005,19.263871191320277,P226) p(13.413995960145327,19.100547554787042,P227) p(13.403299093178031,19.19002190751936,P228) p(12.416726546555351,19.026698270986124,P229) p(12.544637258201112,17.299376977813864,P230) p(12.97931660917322,18.199962266300453,P231) p(11.982047195583243,18.126112982499535,P232) p(13.327719841501303,20.187161705499555,P233) p(12.44581842166221,20.658595566911515,P234) p(12.478495431394805,19.659129602991314,P235) p(11.837101847620415,20.42634161455855,P236) p(20.677230796492196,17.42055248995899,P237) p(20.881204445179836,16.441576110958426,P238) p(21.627036034755406,17.107710661924813,P239) p(21.831009683443046,16.12873428292425,P240) p(21.423062386067762,18.08668704092537,P241) p(22.42194560128958,18.03943958228333,P242) p(23.1015712860232,17.30588049901168,P243) p(22.126477642366314,17.08408693260379,P244) p(22.806103327099937,16.350527849332135,P245) p(23.781196970756827,16.572321415740017,P246) p(21.96342149312693,18.92812155140031,P247) p(24.58140004962643,20.342437726786308,P248) p(23.74789352612972,19.789928111224352,P249) p(24.643134150789905,19.344345095437127,P250) p(23.80962762729318,18.791835479875164,P251) p(24.704868251953357,18.346252464087932,P252) p(22.914387002632992,19.237418495662407,P253) p(22.70676325892383,18.259209734176302,P254) p(23.243980114840326,17.415765574958158,P255) p(23.705815755438593,18.302731099132117,P256) p(24.24303261135509,17.45928693991398,P257) p(23.589135818437498,20.46658157682742,P258) p(24.192779661891215,21.263835683283133,P259) p(23.200515430702286,21.38797953332429,P260) p(23.804159274155992,22.185233639779955,P261) p(22.59687158724857,20.59072542686863,P262) p(21.97584457886243,21.374514591666756,P263) p(22.081871607186834,22.368877839813372,P264) p(22.890001926509214,21.779874115723356,P265) p(22.99602895483362,22.774237363869975,P266) p(22.18789863551124,23.36324108795999,P267) p(21.60757675512933,20.44479484356904,P268) p(19.532371737293147,22.190539985391652,P269) p(20.49664588767088,21.925633656827547,P270) p(20.243924422641797,22.893172731549367,P271) p(20.749367352699963,20.958094582105726,P272) p(21.623002667243327,21.444675857107875,P273) p(21.905450651377286,22.403958472533937,P274) p(20.933463544942562,22.168924294328626,P275) p(21.21591152907652,23.128206909754677,P276) p(11.44895413667135,21.347938790381587,P277) p(9.329331702865415,26.825492493715558,P278) p(7.7414911141972755,26.133566005584036,P279) p(8.735153392607929,26.021159145146967,P280) p(8.335669436440263,26.93789934529868,P281) p(7.34200717001511,27.0503061968818,P282) p(9.622365392696855,25.86939037750423,P283) p(10.303857269032205,26.601216055168614,P284) p(10.596890958863645,25.645113938957287,P285) p(11.278382835198993,26.376939616621662,P286) p(9.915399082528298,24.91328826129291,P287) p(10.794359217092406,24.43639300880339,P288) p(11.755646451418224,24.711941286101975,P289) p(11.036371026145702,25.40666631271253,P290) p(11.997658260471518,25.682214590011117,P291) p(12.716933685744044,24.987489563400572,P292) p(9.941875746210233,23.91363882960184,P293) p(11.022073872018028,22.252246945630397,P294) p(12.018667839639587,22.16978202157,P295) p(11.591787574986263,23.074090176818807,P296) p(12.588381542607834,22.991625252758418,P297) p(10.595193607364683,23.156555100879203,P298) p(10.924188418653113,24.100886829746383,P299) p(11.820561052198578,24.544188196573486,P300) p(11.756284980630474,23.546256041252402,P301) p(12.652657614175936,23.98955740807949,P302) p(8.329574960525253,27.207499896332234,P303) p(7.699657328231249,27.98416184114807,P304) p(8.687225118741392,28.141355540598504,P305) p(8.057307486447387,28.918017485414342,P306) p(9.317142751035398,27.36469359578267,P307) p(9.911663037438094,28.1687742068259,P308) p(9.772506006126584,29.15904453387633,P309) p(8.984485256360443,28.543395832304096,P310) p(8.84532823063123,29.533666173170552,P311) p(9.633348974815073,30.14931486092676,P312) p(10.310757130090698,27.25186423021435,P313) p(12.602098934890662,30.35087289425931,P314) p(11.614531144380518,30.193679194808876,P315) p(12.244448776674522,29.41701724999304,P316) p(11.25688098616438,29.259823550542606,P317) p(11.886798618458384,28.483161605726767,P318) p(10.626963353870375,30.03648549535844,P319) p(10.032443067467677,29.232404884315212,P320) p(10.171600098779185,28.24213455726478,P321) p(10.959620848545327,28.857783258837014,P322) p(11.098777874274539,27.867512917970558,P323) p(12.778764028816182,29.366601872340908,P324) p(13.542835191043642,30.01173384260162,P325) p(13.719500284969206,29.027462820683226,P326) p(14.48357144719662,29.672594790943926,P327) p(12.955429122741798,28.382330850422527,P328) p(13.771093257530064,27.80380512133167,P329) p(14.758422469053773,27.96249043278794,P330) p(14.127332352363341,28.738199956137795,P331) p(15.11466156388705,28.89688526759407,P332) p(15.745751680577479,28.12117574424422,P333) p(12.862243212000335,27.386682124194607,P334) p(14.71573323363215,25.407117347290097,P335) p(14.399990779738445,26.35596227814508,P336) p(15.379585821057795,26.15498079884277,P337) p(13.420395738419096,26.556943757447378,P338) p(13.859893979307422,27.455187207886105,P339) p(14.80282282994245,27.788181476065162,P340) p(14.619739900182608,26.80508400336444,P341) p(15.562668750817636,27.138078271543495,P342) p(12.298541491908516,9.38565797515269,P343) p(12.229193716764883,10.38325052027451,P344) p(13.127808091038169,9.944511182683916,P345) p(13.058460315894536,10.942103727805737,P346) p(13.957074690167822,10.503364390215143,P347) p(12.159845941621247,11.380843065396329,P348) p(12.809307072143177,12.14123785755444,P349) p(13.805468992099506,12.228767448144863,P350) p(13.383190868952394,11.322301115333257,P351) p(14.379352801111828,11.409830714475216,P352) p(14.801630912055835,12.316297038735286,P353) p(11.826055299967901,12.323490299277937,P354) p(14.398492495258854,14.256536817738713,P355) p(13.569225896129211,13.697683610207484,P356) p(12.67061152185591,14.13642294779808,P357) p(14.467840270402487,13.258944272616894,P358) p(13.818379139880557,12.498549480458783,P359) p(12.822217219924221,12.41101988986836,P360) p(13.244495343071355,13.317486222679964,P361) p(12.24833341091191,13.229956623538007,P362) p(11.771382333975524,10.235424544398255,P363) p(11.29904247668861,9.354008037167887,P364) p(10.771883318755618,10.203774606413452,P365) p(10.299543461468705,9.322358099183088,P366) p(11.244223176042526,11.08519111364382,P367) p(10.272710348326918,11.322178087091778,P368) p(9.413471170349958,10.810604011292904,P369) p(10.286126904897811,10.32226809313743,P370) p(9.426887726920851,9.810694017338552,P371) p(8.554231992372998,10.299029935494016,P372) p(10.963703501556644,12.045039389271972,P373) p(9.495549985486413,13.376045112916866,P374) p(8.510875207735541,13.201644476274584,P375) p(9.154247978379374,12.436091422597656,P376) p(8.169573200628497,12.261690785955363,P377) p(10.13892275613028,12.610492059239958,P378) p(10.061616752013446,11.613484646164462,P379) p(9.307924372193224,10.956257290829233,P380) p(9.115594976320967,11.937587716059909,P381) p(8.361902596500746,11.280360360724696,P382) nolabel() s(P1,P2) s(P1,P3) s(P3,P4) s(P2,P4) s(P3,P5) s(P4,P5) s(P1,P6) s(P6,P7) s(P3,P7) s(P7,P8) s(P5,P8) s(P8,P9) s(P5,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P96,P11) s(P6,P12) s(P7,P12) s(P15,P13) s(P16,P13) s(P10,P13) s(P12,P14) s(P12,P15) s(P14,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P13,P17) s(P26,P17) s(P27,P17) s(P6,P18) s(P14,P18) s(P1,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P23,P21) s(P24,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P21,P25) s(P21,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P25,P28) s(P27,P28) s(P19,P29) s(P22,P29) s(P1,P30) s(P29,P30) s(P30,P31) s(P29,P31) s(P34,P32) s(P35,P32) s(P24,P32) s(P31,P33) s(P31,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P32,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P30,P37) s(P33,P37) s(P1,P38) s(P37,P38) s(P38,P39) s(P37,P39) s(P42,P40) s(P43,P40) s(P39,P41) s(P39,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P40,P44) s(P40,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P38,P48) s(P41,P48) s(P1,P49) s(P48,P49) s(P49,P50) s(P48,P50) s(P53,P51) s(P54,P51) s(P43,P51) s(P50,P52) s(P50,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P51,P55) s(P54,P55) s(P64,P55) s(P65,P55) s(P49,P56) s(P52,P56) s(P1,P57) s(P56,P57) s(P57,P58) s(P56,P58) s(P61,P59) s(P62,P59) s(P58,P60) s(P58,P61) s(P60,P61) s(P60,P62) s(P61,P62) s(P59,P63) s(P59,P64) s(P63,P64) s(P63,P65) s(P64,P65) s(P63,P66) s(P65,P66) s(P57,P67) s(P60,P67) s(P1,P68) s(P67,P68) s(P68,P69) s(P67,P69) s(P72,P70) s(P73,P70) s(P62,P70) s(P69,P71) s(P69,P72) s(P71,P72) s(P71,P73) s(P72,P73) s(P70,P74) s(P73,P74) s(P83,P74) s(P84,P74) s(P68,P75) s(P71,P75) s(P1,P76) s(P75,P76) s(P76,P77) s(P75,P77) s(P80,P78) s(P81,P78) s(P77,P79) s(P77,P80) s(P79,P80) s(P79,P81) s(P80,P81) s(P91,P81) s(P78,P82) s(P78,P83) s(P82,P83) s(P82,P84) s(P83,P84) s(P82,P85) s(P84,P85) s(P76,P86) s(P79,P86) s(P1,P87) s(P86,P87) s(P87,P88) s(P86,P88) s(P2,P89) s(P87,P89) s(P89,P90) s(P88,P90) s(P92,P91) s(P93,P91) s(P88,P92) s(P90,P92) s(P90,P93) s(P92,P93) s(P91,P94) s(P93,P94) s(P230,P94) s(P232,P94) s(P2,P95) s(P89,P95) s(P4,P96) s(P95,P96) s(P96,P97) s(P95,P97) s(P11,P98) s(P97,P98) s(P98,P99) s(P97,P99) s(P235,P99) s(P236,P99) s(P66,P100) s(P66,P101) s(P100,P101) s(P101,P102) s(P100,P102) s(P101,P103) s(P102,P103) s(P107,P103) s(P108,P103) s(P102,P104) s(P100,P104) s(P105,P104) s(P105,P106) s(P105,P107) s(P106,P107) s(P106,P108) s(P107,P108) s(P106,P109) s(P108,P109) s(P118,P109) s(P120,P109) s(P105,P110) s(P104,P110) s(P116,P110) s(P117,P110) s(P111,P112) s(P111,P113) s(P112,P113) s(P112,P114) s(P113,P114) s(P113,P115) s(P114,P115) s(P119,P115) s(P120,P115) s(P112,P116) s(P114,P116) s(P117,P116) s(P117,P118) s(P117,P119) s(P118,P119) s(P118,P120) s(P119,P120) s(P111,P121) s(P111,P122) s(P121,P122) s(P121,P123) s(P122,P123) s(P122,P124) s(P123,P124) s(P128,P124) s(P129,P124) s(P121,P125) s(P123,P125) s(P126,P125) s(P126,P127) s(P126,P128) s(P127,P128) s(P127,P129) s(P128,P129) s(P127,P130) s(P129,P130) s(P137,P130) s(P139,P130) s(P125,P131) s(P126,P131) s(P135,P131) s(P136,P131) s(P47,P132) s(P46,P132) s(P47,P133) s(P132,P133) s(P132,P134) s(P133,P134) s(P138,P134) s(P139,P134) s(P47,P135) s(P133,P135) s(P136,P135) s(P136,P137) s(P136,P138) s(P137,P138) s(P137,P139) s(P138,P139) s(P140,P141) s(P140,P142) s(P141,P143) s(P142,P143) s(P142,P144) s(P143,P144) s(P140,P145) s(P142,P146) s(P145,P146) s(P144,P147) s(P146,P147) s(P144,P148) s(P147,P148) s(P147,P149) s(P148,P149) s(P148,P150) s(P149,P150) s(P234,P150) s(P145,P151) s(P146,P151) s(P149,P152) s(P154,P152) s(P155,P152) s(P151,P153) s(P151,P154) s(P153,P154) s(P153,P155) s(P154,P155) s(P152,P156) s(P155,P156) s(P165,P156) s(P166,P156) s(P145,P157) s(P153,P157) s(P140,P158) s(P157,P158) s(P157,P159) s(P158,P159) s(P162,P160) s(P163,P160) s(P159,P161) s(P159,P162) s(P161,P162) s(P161,P163) s(P162,P163) s(P160,P164) s(P160,P165) s(P164,P165) s(P164,P166) s(P165,P166) s(P166,P167) s(P158,P168) s(P161,P168) s(P140,P169) s(P168,P169) s(P168,P170) s(P169,P170) s(P163,P171) s(P173,P171) s(P174,P171) s(P170,P172) s(P170,P173) s(P172,P173) s(P172,P174) s(P173,P174) s(P171,P175) s(P174,P175) s(P184,P175) s(P185,P175) s(P169,P176) s(P172,P176) s(P140,P177) s(P176,P177) s(P176,P178) s(P177,P178) s(P181,P179) s(P182,P179) s(P178,P180) s(P178,P181) s(P180,P181) s(P180,P182) s(P181,P182) s(P179,P183) s(P179,P184) s(P183,P184) s(P183,P185) s(P184,P185) s(P183,P186) s(P177,P187) s(P180,P187) s(P140,P188) s(P187,P188) s(P187,P189) s(P188,P189) s(P182,P190) s(P192,P190) s(P193,P190) s(P189,P191) s(P189,P192) s(P191,P192) s(P191,P193) s(P192,P193) s(P190,P194) s(P193,P194) s(P203,P194) s(P204,P194) s(P188,P195) s(P191,P195) s(P140,P196) s(P195,P196) s(P195,P197) s(P196,P197) s(P200,P198) s(P201,P198) s(P197,P199) s(P197,P200) s(P199,P200) s(P199,P201) s(P200,P201) s(P198,P202) s(P198,P203) s(P202,P203) s(P202,P204) s(P203,P204) s(P202,P205) s(P204,P205) s(P196,P206) s(P199,P206) s(P140,P207) s(P206,P207) s(P206,P208) s(P207,P208) s(P201,P209) s(P211,P209) s(P212,P209) s(P208,P210) s(P208,P211) s(P210,P211) s(P210,P212) s(P211,P212) s(P209,P213) s(P212,P213) s(P222,P213) s(P223,P213) s(P207,P214) s(P210,P214) s(P140,P215) s(P214,P215) s(P214,P216) s(P215,P216) s(P219,P217) s(P220,P217) s(P216,P218) s(P216,P219) s(P218,P219) s(P218,P220) s(P219,P220) s(P230,P220) s(P217,P221) s(P217,P222) s(P221,P222) s(P221,P223) s(P222,P223) s(P355,P223) s(P221,P224) s(P355,P224) s(P215,P225) s(P218,P225) s(P140,P226) s(P225,P226) s(P225,P227) s(P226,P227) s(P141,P228) s(P226,P228) s(P227,P229) s(P228,P229) s(P231,P230) s(P232,P230) s(P227,P231) s(P229,P231) s(P229,P232) s(P231,P232) s(P141,P233) s(P228,P233) s(P143,P234) s(P233,P234) s(P233,P235) s(P234,P235) s(P150,P236) s(P235,P236) s(P205,P237) s(P205,P238) s(P237,P238) s(P237,P239) s(P238,P239) s(P238,P240) s(P239,P240) s(P244,P240) s(P245,P240) s(P237,P241) s(P239,P241) s(P242,P241) s(P242,P243) s(P242,P244) s(P243,P244) s(P243,P245) s(P244,P245) s(P243,P246) s(P245,P246) s(P255,P246) s(P257,P246) s(P241,P247) s(P242,P247) s(P253,P247) s(P254,P247) s(P248,P249) s(P248,P250) s(P249,P250) s(P249,P251) s(P250,P251) s(P250,P252) s(P251,P252) s(P256,P252) s(P257,P252) s(P249,P253) s(P251,P253) s(P254,P253) s(P254,P255) s(P254,P256) s(P255,P256) s(P255,P257) s(P256,P257) s(P248,P258) s(P248,P259) s(P258,P259) s(P258,P260) s(P259,P260) s(P259,P261) s(P260,P261) s(P265,P261) s(P266,P261) s(P258,P262) s(P260,P262) s(P263,P262) s(P263,P264) s(P263,P265) s(P264,P265) s(P264,P266) s(P265,P266) s(P264,P267) s(P266,P267) s(P274,P267) s(P276,P267) s(P262,P268) s(P263,P268) s(P272,P268) s(P273,P268) s(P185,P269) s(P186,P269) s(P186,P270) s(P269,P270) s(P269,P271) s(P270,P271) s(P275,P271) s(P276,P271) s(P186,P272) s(P270,P272) s(P273,P272) s(P273,P274) s(P273,P275) s(P274,P275) s(P274,P276) s(P275,P276) s(P98,P277) s(P236,P277) s(P280,P278) s(P281,P278) s(P28,P279) s(P28,P280) s(P279,P280) s(P279,P281) s(P280,P281) s(P279,P282) s(P281,P282) s(P278,P283) s(P278,P284) s(P283,P284) s(P283,P285) s(P284,P285) s(P284,P286) s(P285,P286) s(P290,P286) s(P291,P286) s(P283,P287) s(P285,P287) s(P288,P287) s(P288,P289) s(P288,P290) s(P289,P290) s(P289,P291) s(P290,P291) s(P289,P292) s(P291,P292) s(P300,P292) s(P302,P292) s(P287,P293) s(P288,P293) s(P298,P293) s(P299,P293) s(P277,P294) s(P277,P295) s(P294,P295) s(P294,P296) s(P295,P296) s(P295,P297) s(P296,P297) s(P301,P297) s(P302,P297) s(P294,P298) s(P296,P298) s(P299,P298) s(P299,P300) s(P299,P301) s(P300,P301) s(P300,P302) s(P301,P302) s(P282,P303) s(P282,P304) s(P303,P304) s(P304,P305) s(P303,P305) s(P304,P306) s(P305,P306) s(P310,P306) s(P311,P306) s(P305,P307) s(P303,P307) s(P307,P308) s(P308,P309) s(P308,P310) s(P309,P310) s(P309,P311) s(P310,P311) s(P309,P312) s(P311,P312) s(P319,P312) s(P320,P312) s(P307,P313) s(P308,P313) s(P321,P313) s(P323,P313) s(P314,P315) s(P314,P316) s(P315,P316) s(P315,P317) s(P316,P317) s(P316,P318) s(P317,P318) s(P322,P318) s(P323,P318) s(P315,P319) s(P317,P319) s(P319,P320) s(P320,P321) s(P320,P322) s(P321,P322) s(P321,P323) s(P322,P323) s(P314,P324) s(P314,P325) s(P324,P325) s(P324,P326) s(P325,P326) s(P325,P327) s(P326,P327) s(P331,P327) s(P332,P327) s(P324,P328) s(P326,P328) s(P329,P328) s(P329,P330) s(P329,P331) s(P330,P331) s(P330,P332) s(P331,P332) s(P330,P333) s(P332,P333) s(P340,P333) s(P342,P333) s(P328,P334) s(P329,P334) s(P338,P334) s(P339,P334) s(P167,P335) s(P164,P335) s(P167,P336) s(P335,P336) s(P335,P337) s(P336,P337) s(P341,P337) s(P342,P337) s(P167,P338) s(P336,P338) s(P339,P338) s(P339,P340) s(P339,P341) s(P340,P341) s(P340,P342) s(P341,P342) s(P343,P344) s(P343,P345) s(P344,P345) s(P344,P346) s(P345,P346) s(P345,P347) s(P346,P347) s(P351,P347) s(P352,P347) s(P344,P348) s(P346,P348) s(P348,P349) s(P349,P350) s(P349,P351) s(P350,P351) s(P350,P352) s(P351,P352) s(P350,P353) s(P352,P353) s(P358,P353) s(P359,P353) s(P348,P354) s(P349,P354) s(P360,P354) s(P362,P354) s(P355,P356) s(P224,P356) s(P224,P357) s(P356,P357) s(P361,P357) s(P362,P357) s(P355,P358) s(P356,P358) s(P358,P359) s(P359,P360) s(P359,P361) s(P360,P361) s(P360,P362) s(P361,P362) s(P343,P363) s(P343,P364) s(P363,P364) s(P363,P365) s(P364,P365) s(P364,P366) s(P365,P366) s(P370,P366) s(P371,P366) s(P363,P367) s(P365,P367) s(P368,P367) s(P368,P369) s(P368,P370) s(P369,P370) s(P369,P371) s(P370,P371) s(P369,P372) s(P371,P372) s(P380,P372) s(P382,P372) s(P367,P373) s(P368,P373) s(P378,P373) s(P379,P373) s(P85,P374) s(P85,P375) s(P374,P375) s(P374,P376) s(P375,P376) s(P375,P377) s(P376,P377) s(P381,P377) s(P382,P377) s(P374,P378) s(P376,P378) s(P379,P378) s(P379,P380) s(P379,P381) s(P380,P381) s(P380,P382) s(P381,P382) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) color(#008000) m(P2,P1,MA11) m(P1,P3,MB11) b(P1,MA11,MB11) color(#FFA500) m(P65,P66,MA12) m(P66,P100,MB12) b(P66,MA12,MB12) color(#EE82EE) m(P281,P282,MA13) m(P282,P303,MB13) f(P282,MA13,MB13) color(#00FFFF) m(P217,P221,MA14) m(P221,P224,MB14) b(P221,MA14,MB14) pen(2) color(red) s(P81,P91) abstand(P81,P91,A0) print(abs(P81,P91):,-1.65,35.151) print(A0,0.95,35.151) color(red) s(P11,P96) abstand(P11,P96,A1) print(abs(P11,P96):,-1.65,34.551) print(A1,0.95,34.551) color(red) s(P132,P46) abstand(P132,P46,A2) print(abs(P132,P46):,-1.65,33.951) print(A2,0.95,33.951) color(red) s(P335,P164) abstand(P335,P164,A3) print(abs(P335,P164):,-1.65,33.351) print(A3,0.95,33.351) color(red) s(P223,P355) abstand(P223,P355,A4) print(abs(P223,P355):,-1.65,32.751) print(A4,0.95,32.751) print(min=0.9999999999999628,-1.65,32.151) print(max=1.0000000129047961,-1.65,31.551) color(blue) color(orange) color(red) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1132, eingetragen 2018-04-15

danke fürs testen, stefan @slash sorry, weder anzahl hölzer noch abstand passen bei deinem versuch in #1130, aber du bist auf nem guten weg, der 4/11er 771 rekord wird fallen! http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-4-11-775-test.jpg [Die Antwort wurde nach Beitrag No.1130 begonnen.]


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1133, eingetragen 2018-04-15

aus der serie 4/11er geht nicht wegen festem kern hier noch zwei versuche, (roter kern wieder in ursprungslage) http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-4-11-749-versuch.PNG http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-4-11-741-versuch.PNG der gelbe wäre jetzt beweglich, der rote ist oben immer noch durch das kleine dreieck fixiert, da geht noch was... A-B und A-C darf halt nicht direkt verbunden sein


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1134, vom Themenstarter, eingetragen 2018-04-16

Keine Ahnung, ob wir diesen Kern schon mal probiert hatten, also wo 5 große Dreiecke reinpassen. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_11_slash_neu4.png


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1135, eingetragen 2018-04-16

auf welchem kern basiert dieser entwurf? ich hab derzeit keine exakte kern-vorlage mit 5 x 2 um stefan ne test-chance zu geben wäre es evtl geschickt den linken kern immer in einer art normallage darzustellen, gelbe innere linie waagerecht richtung 3 uhr, (so war ellersell #518-2) gezeichnet, sonst sucht man jedesmal ziemlich lange herum also deine zeichnung dann wohl ungefähr so gedreht??? geht das? http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-4-11-slash100.PNG


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1136, vom Themenstarter, eingetragen 2018-04-16

Einfach an den Rauten orientieren, z.B. der sehr schmalen. Ich kann den Kern aber wohl selbst testen mit Stefans letzter Eingabe #1131. Ich weiß nicht, ob ich es richtig gemacht habe, aber P81,P91 geht nicht auf 1. Ich habe mich nur um den linken Kern gekümmert, deshalb nicht verwirren lassen. Die gemessenen Kanten sind leider nicht sichtbar. \geo ebene(685.69,612.42) x(0.22,27.65) y(3.33,27.83) form(.) #//Eingabe war: # ##1123 4/11-771 mit No.803 Kern 4/11 mit 813 # # # # # #P[1]=[-6.493048924157435,91.56895320091562]; #P[2]=[18.498384200231513,90.91452949321878]; D=ab(1,2); A(2,1); #M(3,1,2,gruenerWinkel); N(4,3,2); L(5,3,4); #M(6,1,3,blauerWinkel); N(7,6,3); N(8,7,5); L(9,8,5); L(10,8,9); L(11,10,9); #L(12,6,7); #Q(13,12,10,ab(11,5,8,9,10),D); L(17,16,13); #N(18,6,14); N(19,1,18); L(20,19,18); #Q(21,20,17,ab(11,5,[8,10]),ab(5,11,[8,10])); L(28,25,27); #N(29,19,22); N(30,1,29); L(31,30,29); #Q(32,31,24,ab(13,12,[14,17]),D); #N(37,30,33); N(38,1,37); L(39,38,37); #Q(40,39,36,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(48,38,41); N(49,1,48); L(50,49,48); #Q(51,50,43,ab(13,12,[14,17]),D); #N(56,49,52); N(57,1,56); L(58,57,56); #Q(59,58,55,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(67,57,60); N(68,1,67); L(69,68,67); #Q(70,69,62,ab(13,12,[14,17]),D); #N(75,68,71); N(76,1,75); L(77,76,75); #Q(78,77,74,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(86,76,79); N(87,1,86); L(88,87,86); # #N(89,2,87); R(81,91); #Q(90,89,88,D,ab(71,69,[70,74])); #L(95,2,89); N(96,4,95); L(97,96,95); N(98,11,97); L(99,98,97); L(100,98,99); # #A(81,91); #//R(81,91); #//A(11,96); R(11,96); # #Z(100);M(100,66,65,orangerWinkel,2); L(104,102,100); #Q(105,103,104,ab(66,103,[100,104]),ab(101,102,103)); #A(109,110,ab(109,110,66,[100,110],"gespiegelt")); Z(47); #Q(47,44,111,D,ab(112,66,[100,110],[112,120])); A(132,46);// R(132,46); #A(94,99,ab(94,99,[1,139],"gespiegelt")); N(277,98,236); # #Q(278,28,277,ab(17,21,[25,28]),ab(66,111,[100,120])); #M(303,282,281,vierterWinkel,2); L(307,305,303); #Q(308,306,307,ab(282,306,[303,307]),ab(305,303,307)); #A(312,313,ab(313,312,282,[303,313])); Z(167); #Q(167,314,166,ab(112,66,[100,110],[112,120]),D); A(335,164); //R(335,164); # #Z(224); M(224,221,217,fuenfterWinkel); #Q(343,224,85,ab(282,316,[303,313],[315,323],"gespiegelt"),ab(278,277,[283, #302])); #A(223,355); #//R(223,355); # #Z(13,10); Z(11,98); Z(97,98); Z(97,99); R(13,10); # N(383,96,97); N(384,383,97); R(384,94); # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(9.740278043033703,13.662758128036621,P1) p(10.73993536800926,13.636581179728749,P2) p(10.59053841342275,14.189120458134319,P3) p(11.59019573839831,14.162943509826448,P4) p(11.1130369781387,15.041760622488411,P5) p(10.216669709095134,14.54199130558807,P6) p(11.066930079484182,15.068353635685767,P7) p(11.589428644200126,15.920993800039863,P8) p(12.112671078779083,15.06880992630375,P9) p(12.589062744840508,15.9480431038552,P10) p(13.112305179419465,15.095859230119089,P11) p(10.185956744829882,15.541519551225,P12) p(11.861298399345225,16.633870383442286,P13) p(10.131790373186098,16.54005147569359,P14) p(11.023627572087552,16.087694967333643,P15) p(10.969461200443769,17.086226891802234,P16) p(11.807132027701439,17.632402307910873,P17) p(10.162503337451323,15.540523230056658,P18) p(9.686111671389892,14.661290052505212,P19) p(9.162869236810941,15.513473926241328,P20) p(9.820413772640455,17.40229238850835,P21) p(8.509372985038171,16.270403677882086,P22) p(9.491641504725697,16.457883157374837,P23) p(8.838145252952927,17.2148129090156,P24) p(10.217452818473012,18.32009410788153,P25) p(10.813772900170946,17.51734734820961,P26) p(11.210811946003505,18.435149067582795,P27) p(10.61449186430557,19.237895827254714,P28) p(9.032615419617118,15.418219804145966,P29) p(9.086781791260929,14.41968787967738,P30) p(8.19494459235946,14.872044388037303,P31) p(7.906614001080194,16.851151628722494,P32) p(7.265883370916097,15.241970389840583,P33) p(8.050779296719828,15.861598008379898,P34) p(7.121718075276462,16.23152401018318,P35) p(6.977552779636827,17.221077630525773,P36) p(8.157720569817561,14.789613881480651,P37) p(8.811216821590333,14.032684129839897,P38) p(7.828948301902807,13.845204650347142,P39) p(6.448438811343841,15.29233752139825,P40) p(6.857194014772182,13.60920972361513,P41) p(7.138693556623323,14.568771085872697,P42) p(6.166939269492698,14.332776159140685,P43) p(5.745548337515886,16.003635617699594,P44) p(6.712995795490334,16.25670757596201,P45) p(6.010105321662378,16.968005672263352,P46) p(5.156763093519793,15.195346104930522,P47) p(7.839462534459718,13.796689203107839,P48) p(8.768523755903086,13.426763201304567,P49) p(7.98362783009936,12.807135582765245,P50) p(6.0556413505619044,13.33898907266709,P51) p(7.2713318935417925,12.105256320524525,P52) p(7.019634590330632,13.073062327716167,P53) p(6.307338653773066,12.371183065475446,P54) p(5.343345414004338,12.637109810426368,P55) p(8.056227819345521,12.724883939063846,P56) p(9.027982106476136,12.960878865795902,P57) p(8.746482564625037,12.001317503538322,P58) p(6.860935283645865,11.334450611878484,P59) p(8.563857578940336,11.018134857941046,P60) p(7.803708924135451,11.667884057708404,P61) p(7.62108393845075,10.684701412111126,P62) p(5.917469837027511,11.002979721697718,P63) p(6.1021403488251025,11.985780211152427,P64) p(5.158674902206748,11.65430932097166,P65) p(4.974004390409158,10.671508831516952,P66) p(8.845357120791457,11.97769622019862,P67) p(9.557653057349022,12.67957548243934,P68) p(9.809350360560183,11.7117694752477,P69) p(8.497117071209672,10.202450491626166,P70) p(10.134846329337734,10.766226047207736,P71) p(9.153233715884927,10.957109983436933,P72) p(9.478729684662477,10.01156655539697,P73) p(8.822613039987221,9.256907063586203,P74) p(9.883149026126576,11.73403205439938,P75) p(10.065774011811257,12.717214699996662,P76) p(10.825922666616156,12.067465500229318,P77) p(10.647440428059774,10.075445397288611,P78) p(11.64387211397503,11.492175398137071,P79) p(10.736681547337964,11.071455448758964,P80) p(11.55463099469684,10.496165346666716,P81) p(10.545671076520469,9.080637376066793,P82) p(9.735026734023497,9.666176230437408,P83) p(9.633257382484194,8.67136820921559,P84) p(10.443901724981165,8.085829354844975,P85) p(10.883723459170145,12.141924597904431,P86) p(10.558227490392591,13.087468025944393,P87) p(11.5398401038454,12.896584089715201,P88) p(11.55788481536815,13.061291077636518,P89) p(12.539497428820956,12.870407141407327,P90) p(12.494157624364615,11.13894986439127,P91) p(12.016998864105007,12.017766977053235,P92) p(13.016656189080564,11.991590028745362,P93) p(13.493814949340173,11.112772916083397,P94) p(11.647125934646319,14.057301129106875,P95) p(12.497386305035366,14.583663459204574,P96) p(12.528099269300622,13.584135213567643,P97) p(13.366768224641236,14.12877673176827,P98) p(13.419107137688394,13.130147351977627,P99) p(4.2351698402759945,11.345395697043744,P100) p(4.020983970519707,10.36860277467138,P101) p(3.282149420386543,11.042489640198173,P102) p(3.067963550630254,10.06569671782581,P103) p(3.49633529014283,12.019282562570536,P104) p(2.4970131424433992,11.98246890861721,P105) p(1.8097640392436602,11.256047082023905,P106) p(2.7824883465368266,11.024082813221511,P107) p(2.0952392433370868,10.297660986628205,P108) p(1.1225149360439222,10.529625255430599,P109) p(2.9647926567634064,12.866314102066006,P110) p(0.36172640403415635,14.307892421184246,P111) p(1.1894176801030678,13.746708715505427,P112) p(0.2895726967608656,13.310498896778398,P113) p(1.1172639728297806,12.74931519109958,P114) p(0.21741898948757665,12.313105372372547,P115) p(2.0171089561719837,13.185525009826609,P116) p(2.21450605118192,12.205201396481693,P117) p(1.6685104936129207,11.367413325956145,P118) p(1.2159625203347488,12.259153384427119,P119) p(0.6699669627657503,11.421365313901573,P120) p(1.353811239159878,14.433461843869758,P121) p(0.7490225116127736,15.229847802455199,P122) p(1.7411073467384863,15.355417225140751,P123) p(1.1363186191913908,16.151803183726138,P124) p(2.3458960742855854,14.559031266555355,P125) p(2.9657962810874663,15.343711923642683,P126) p(2.8583406455176723,16.337921804092623,P127) p(2.051057450139427,15.747757553684409,P128) p(1.943601814569634,16.741967434134352,P129) p(2.7508850099478748,17.33213168454257,P130) p(3.335399560582406,14.414522268197366,P131) p(5.408094122388559,16.163247295098074,P132) p(4.444201588915881,15.89695575577393,P133) p(4.695532617784648,16.864856945941483,P134) p(4.1928705600471154,14.929054565606375,P135) p(3.3185370196909885,15.41438008544674,P136) p(3.0347110148194307,16.373255884994656,P137) p(4.007034818737817,16.139618515694114,P138) p(3.7232088138662593,17.098494315242025,P139) p(17.048466404924085,13.933396414088765,P140) p(16.053483277403913,13.83335354352734,P141) p(16.16160358792102,14.395429252550915,P142) p(15.166620460400846,14.295386381989488,P143) p(15.577472356787222,15.207088482039566,P144) p(16.508348886985054,14.774986021210538,P145) p(15.62148606998199,15.237018859672688,P146) p(15.037354838848191,16.048678089161342,P147) p(14.578575618489282,15.16012779403626,P148) p(14.038458100550258,16.001717401158036,P149) p(13.579678880191354,15.113167106032954,P150) p(16.465049653974376,15.774048169638096,P151) p(14.713503271196629,16.739493801964542,P152) p(16.445213280063655,16.77385140941584,P153) p(15.589276462585506,16.256770985801317,P154) p(15.569440088674785,17.256574225579065,P155) p(14.693666897285919,17.739297041742283,P156) p(16.48851251307436,15.774789260988284,P157) p(17.028630031013392,14.933199653866513,P158) p(17.487409251372295,15.821749948991599,P159) p(16.691963120857743,17.656760971696755,P160) p(18.083130799687225,16.6249409828517,P161) p(17.089686186115024,16.739255460344175,P162) p(17.685407734429948,17.542446494204285,P163) p(16.22812823165877,18.542682636157995,P164) p(15.692815009071829,17.698029006719523,P165) p(15.228980119872858,18.58395067118076,P166) p(15.820316634333986,19.390375575722373,P167) p(17.624351579328327,15.736390687726615,P168) p(17.644187953239015,14.73658744794887,P169) p(18.50012477071718,15.25366787156337,P170) p(18.641284978762606,17.24868010101575,P171) p(19.399280458511733,15.691296765841045,P172) p(18.5707048747399,16.251173986289558,P173) p(19.46986056253445,16.688802880567238,P174) p(19.54044066655716,17.686308995293427,P175) p(18.543343641033573,15.174216342226542,P176) p(17.947622092718643,14.371025308366438,P177) p(18.94106670629084,14.25671083087396,P178) p(20.210760725738687,15.801986565808793,P179) p(19.92761423230542,14.093236126670167,P180) p(19.575913716014767,15.029348698341376,P181) p(20.562461242029343,14.865873994137582,P182) p(20.85911625737056,16.563324273138694,P183) p(19.875600696147927,16.74414778055111,P184) p(20.5239562277798,17.505485487881014,P185) p(21.50607230206498,15.800796977736525,P186) p(18.934169618733215,14.207550604162597,P187) p(18.035013930938653,13.76992170988493,P188) p(18.86358951471049,13.210044489436406,P189) p(20.746957755660112,13.88304082596605,P190) p(19.62584753699217,12.562771202897226,P191) p(19.8052736351853,13.546542657701227,P192) p(20.567531657466972,12.899269371162047,P193) p(21.509215777941787,13.235767539426869,P194) p(18.797271953220324,13.122648423345746,P195) p(17.810724427205756,13.286123127549583,P196) p(18.16242494349637,12.35001055587836,P197) p(20.09213114272272,11.82443089049223,P198) p(18.4172688223345,11.38302834434666,P199) p(19.127278043109545,12.087220723185295,P200) p(19.38212192194768,11.120238511653596,P201) p(21.057528997162184,11.563649406019733,P202) p(20.80067346033225,12.530099214959549,P203) p(21.766071314771715,12.269317730487053,P204) p(22.022926851601646,11.30286792154724,P205) p(18.065568306043865,12.31914091601788,P206) p(17.303310283762197,12.966414202557063,P207) p(17.123884185569057,11.982642747753058,P208) p(18.54415696249808,10.574514472660786,P209) p(16.869214950792777,11.015614526417991,P210) p(17.834020574033563,11.278578610206923,P211) p(17.579351339257283,10.311550388871856,P212) p(18.28948772772179,9.607486251325719,P213) p(17.048641048985914,11.999385981221996,P214) p(16.7937971701478,12.966368192753702,P215) p(16.08378794937274,12.262175813915078,P216) p(16.409117039146935,10.288812952364601,P217) p(15.310629037322558,11.627963470360202,P218) p(16.246452494259838,11.27549438313984,P219) p(15.473293582209655,10.64128203958496,P220) p(16.584186595602493,9.30425688468615,P221) p(17.349302383434363,9.94814960184516,P222) p(17.52437193988992,8.963593534166709,P223) p(15.832675368174392,8.644536584066632,P224) p(16.0206382580976,12.332155849198838,P225) p(16.275307492873885,13.299184070533904,P226) p(15.310501869633097,13.036219986744976,P227) p(15.28032436535371,13.199141199972477,P228) p(14.315518742112921,12.93617711618355,P229) p(14.488798076860348,11.212815786644823,P230) p(14.899649973246722,12.1245178866949,P231) p(13.904666845726545,12.024475016133474,P232) p(15.117659820466635,14.185822630747719,P233) p(14.230797003463575,14.64785546920987,P234) p(14.27409623647425,13.648793320782314,P235) p(13.397441102526198,14.129912615887289,P236) p(22.709895053915155,12.029555398396912,P237) p(22.995740768322236,11.071279745176454,P238) p(23.682708970635744,11.797967222026125,P239) p(23.968554685042825,10.839691568805666,P240) p(23.396863256228663,12.756242875246592,P241) p(24.39617109633015,12.793442884812324,P242) p(25.135266129677845,12.119841718185679,P243) p(24.18236289068649,11.816567226808992,P244) p(24.92145792403418,11.142966060182347,P245) p(25.874361163025533,11.446240551559033,P246) p(23.86430102297446,13.640268855758308,P247) p(26.353614038949246,15.27042917755129,P248) p(25.56969663024293,14.649564058280458,P249) p(26.499340300208278,14.28110422750734,P250) p(25.715422891501973,13.660239108236508,P251) p(26.645066561467324,13.29177927746339,P252) p(24.785779221536625,14.028698939009622,P253) p(24.661430441945285,13.036460368395607,P254) p(25.267895802485405,12.241350459977323,P255) p(25.653248501706305,13.1641198229295,P256) p(26.259713862246432,12.369009914511212,P257) p(25.35495904839363,15.322277126771823,P258) p(25.899188184830585,16.161213743598854,P259) p(24.900533194274978,16.21306169281943,P260) p(25.444762330711935,17.0519983096464,P261) p(24.356304057838024,15.374125075992445,P262) p(23.68006445557365,16.1108068256845,P263) p(23.713691056889935,17.110241291612056,P264) p(24.562413393142798,16.58140256766545,P265) p(24.596039994459073,17.58083703359301,P266) p(23.747317658206214,18.109675757539623,P267) p(23.38019914696817,15.156825276232441,P268) p(21.18384082844677,16.74745788714909,P269) p(22.16478896157684,16.553188074495075,P270) p(21.842557487958622,17.49984898390765,P271) p(22.48702043519505,15.606527165082506,P272) p(23.323063050955614,16.15519167517245,P273) p(23.535190354580916,17.13243371635604,P274) p(22.58281026945712,16.82752032954005,P275) p(22.79493757308242,17.80476237072363,P276) p(13.345102189478965,15.128541995677926,P277) p(11.852109400107253,20.80897915893263,P278) p(10.243597209908309,20.166570773260865,P279) p(11.233300632206412,20.023437493093674,P280) p(10.862405977809148,20.952112439099825,P281) p(9.872702555511045,21.09524571926702,P282) p(12.036249270935226,19.82607910909467,P283) p(12.7953957480619,20.47699894000026,P284) p(12.979535618889873,19.494098890162306,P285) p(13.738682096016548,20.145018721067892,P286) p(12.220389141763203,18.843179059256713,P287) p(13.040426177248241,18.270868601172204,P288) p(14.026520964107977,18.437052449148027,P289) p(13.389554136632395,19.207943661120048,P290) p(14.375648923492133,19.374127509095867,P291) p(15.012615750967713,18.60323629712385,P292) p(12.134772263953025,17.846850925440332,P293) p(13.0221581920333,16.0749600716432,P294) p(14.003252287142871,15.881428739448186,P295) p(13.680308289697233,16.827846815413473,P296) p(14.661402384806781,16.63431548321845,P297) p(12.699214194587688,17.021378147608495,P298) p(13.131873625005234,17.922935587415164,P299) p(14.072244687986474,18.26308594226951,P300) p(13.896638004906006,17.278625535316806,P301) p(14.837009067887244,17.61877589017115,P302) p(10.864665761281724,21.22177238996202,P303) p(10.259108847318247,22.017574390431378,P304) p(11.251072053088926,22.144101061126378,P305) p(10.645515139125449,22.93990306159574,P306) p(11.856628967052403,21.34829906065702,P307) p(12.475771712235627,22.133577521514688,P308) p(12.367356769673282,23.12768325041338,P309) p(11.560643425680539,22.536740291555212,P310) p(11.452228483118192,23.530846020453907,P311) p(12.258941827110936,24.12178897931208,P312) p(12.846271435791499,21.204744945188345,P313) p(15.23251070739139,24.231288205233405,P314) p(14.24054750162071,24.104761534538405,P315) p(14.84610441558419,23.30895953406904,P316) p(13.854141209813509,23.182432863374046,P317) p(14.459698123776988,22.38663086290468,P318) p(13.248584295850032,23.9782348638434,P319) p(12.629441550666808,23.192956402985736,P320) p(12.737856493229152,22.19885067408704,P321) p(13.544569837221898,22.789793632945212,P322) p(13.65298477978424,21.795687904046517,P323) p(15.296195673947626,23.233318153060125,P324) p(16.128620608067674,23.787455978023672,P325) p(16.19230557462396,22.7894859258504,P326) p(17.02473050874395,23.343623750813947,P327) p(15.359880640503953,22.235348100886856,P328) p(16.104528515930813,21.56789058042411,P329) p(17.103494032084235,21.613364721826947,P330) p(16.564629512337383,22.455757165619026,P331) p(17.563595028490802,22.50123130702186,P332) p(18.102459548237658,21.65883886322979,P333) p(15.154169409549674,21.256735363661722,P334) p(16.77073157361903,19.0793909407582,P335) p(16.56484469804212,20.05796673979738,P336) p(17.515259637327162,19.7469821048332,P337) p(15.614429758757073,20.368951374761558,P338) p(16.153143071613997,21.21144052397994,P339) p(17.12780130992583,21.435139693604867,P340) p(16.83420135447058,20.479211314406573,P341) p(17.80885959278241,20.702910484031495,P342) p(14.095266607298228,3.485402382162685,P343) p(14.128181564864434,4.484860538149424,P344) p(14.977280239185399,3.9566262707392355,P345) p(15.010195196751603,4.956084426725976,P346) p(15.85929387107257,4.427850159315786,P347) p(14.161096522430638,5.484318694136166,P348) p(14.884831821154824,6.1743963835165925,P349) p(15.884724033155099,6.15971427259271,P350) p(15.372062846113693,5.301123271416189,P351) p(16.371955058113976,5.286441160492306,P352) p(16.88461624515538,6.145032161668828,P353) p(13.925339362204411,6.4561306931370375,P354) p(16.681774042495356,8.116302316656446,P355) p(15.79976041060818,7.645078428079894,P356) p(14.950661736287222,8.17331269549008,P357) p(16.648859084929153,7.116844160669698,P358) p(15.925123786204978,6.426766471289272,P359) p(14.925231574204698,6.441448582213151,P360) p(15.437892761246088,7.30003958338968,P361) p(14.438000549245817,7.3147216943135565,P362) p(13.53139396693143,4.311264141445542,P363) p(13.098113023561766,3.410005230747461,P364) p(12.53424038319497,4.235866990030317,P365) p(12.100959439825305,3.334608079332237,P366) p(12.967521326564631,5.137125900728398,P367) p(11.986560902783543,5.33133364252882,P368) p(11.150553005986968,4.782616232112704,P369) p(12.043760171304422,4.33297086093053,P370) p(11.207752274507845,3.7842534505144174,P371) p(10.314545109190393,4.233898821696586,P372) p(12.645229952684858,6.083766418730182,P373) p(11.120187940159088,7.349190396358321,P374) p(10.144096781103384,7.131828833028333,P375) p(10.82038299628132,6.395189874541673,P376) p(9.844291837225594,6.177828311211677,P377) p(11.796474155337037,6.612551437871668,P378) p(11.762910794293784,5.6131148461884,P379) p(11.038727951742086,4.923506833942493,P380) p(10.803601315759689,5.895471578700041,P381) p(10.079418473207996,5.2058635664541315,P382) p(13.37835963968967,14.110497543665343,P383) p(13.409072603954924,13.110969298028412,P384) nolabel() s(P1,P2) s(P1,P3) s(P3,P4) s(P2,P4) s(P3,P5) s(P4,P5) s(P1,P6) s(P6,P7) s(P3,P7) s(P7,P8) s(P5,P8) s(P8,P9) s(P5,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P6,P12) s(P7,P12) s(P15,P13) s(P16,P13) s(P12,P14) s(P12,P15) s(P14,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P13,P17) s(P26,P17) s(P27,P17) s(P6,P18) s(P14,P18) s(P1,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P23,P21) s(P24,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P21,P25) s(P21,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P25,P28) s(P27,P28) s(P19,P29) s(P22,P29) s(P1,P30) s(P29,P30) s(P30,P31) s(P29,P31) s(P34,P32) s(P35,P32) s(P24,P32) s(P31,P33) s(P31,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P32,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P30,P37) s(P33,P37) s(P1,P38) s(P37,P38) s(P38,P39) s(P37,P39) s(P42,P40) s(P43,P40) s(P39,P41) s(P39,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P40,P44) s(P40,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P38,P48) s(P41,P48) s(P1,P49) s(P48,P49) s(P49,P50) s(P48,P50) s(P53,P51) s(P54,P51) s(P43,P51) s(P50,P52) s(P50,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P51,P55) s(P54,P55) s(P64,P55) s(P65,P55) s(P49,P56) s(P52,P56) s(P1,P57) s(P56,P57) s(P57,P58) s(P56,P58) s(P61,P59) s(P62,P59) s(P58,P60) s(P58,P61) s(P60,P61) s(P60,P62) s(P61,P62) s(P59,P63) s(P59,P64) s(P63,P64) s(P63,P65) s(P64,P65) s(P63,P66) s(P65,P66) s(P57,P67) s(P60,P67) s(P1,P68) s(P67,P68) s(P68,P69) s(P67,P69) s(P72,P70) s(P73,P70) s(P62,P70) s(P69,P71) s(P69,P72) s(P71,P72) s(P71,P73) s(P72,P73) s(P70,P74) s(P73,P74) s(P83,P74) s(P84,P74) s(P68,P75) s(P71,P75) s(P1,P76) s(P75,P76) s(P76,P77) s(P75,P77) s(P80,P78) s(P81,P78) s(P77,P79) s(P77,P80) s(P79,P80) s(P79,P81) s(P80,P81) s(P91,P81) s(P78,P82) s(P78,P83) s(P82,P83) s(P82,P84) s(P83,P84) s(P82,P85) s(P84,P85) s(P76,P86) s(P79,P86) s(P1,P87) s(P86,P87) s(P87,P88) s(P86,P88) s(P2,P89) s(P87,P89) s(P89,P90) s(P88,P90) s(P92,P91) s(P93,P91) s(P88,P92) s(P90,P92) s(P90,P93) s(P92,P93) s(P91,P94) s(P93,P94) s(P230,P94) s(P232,P94) s(P2,P95) s(P89,P95) s(P4,P96) s(P95,P96) s(P96,P97) s(P95,P97) s(P98,P99) s(P235,P99) s(P236,P99) s(P66,P100) s(P66,P101) s(P100,P101) s(P101,P102) s(P100,P102) s(P101,P103) s(P102,P103) s(P107,P103) s(P108,P103) s(P102,P104) s(P100,P104) s(P105,P104) s(P105,P106) s(P105,P107) s(P106,P107) s(P106,P108) s(P107,P108) s(P106,P109) s(P108,P109) s(P118,P109) s(P120,P109) s(P105,P110) s(P104,P110) s(P116,P110) s(P117,P110) s(P111,P112) s(P111,P113) s(P112,P113) s(P112,P114) s(P113,P114) s(P113,P115) s(P114,P115) s(P119,P115) s(P120,P115) s(P112,P116) s(P114,P116) s(P117,P116) s(P117,P118) s(P117,P119) s(P118,P119) s(P118,P120) s(P119,P120) s(P111,P121) s(P111,P122) s(P121,P122) s(P121,P123) s(P122,P123) s(P122,P124) s(P123,P124) s(P128,P124) s(P129,P124) s(P121,P125) s(P123,P125) s(P126,P125) s(P126,P127) s(P126,P128) s(P127,P128) s(P127,P129) s(P128,P129) s(P127,P130) s(P129,P130) s(P137,P130) s(P139,P130) s(P125,P131) s(P126,P131) s(P135,P131) s(P136,P131) s(P47,P132) s(P46,P132) s(P47,P133) s(P132,P133) s(P132,P134) s(P133,P134) s(P138,P134) s(P139,P134) s(P47,P135) s(P133,P135) s(P136,P135) s(P136,P137) s(P136,P138) s(P137,P138) s(P137,P139) s(P138,P139) s(P140,P141) s(P140,P142) s(P141,P143) s(P142,P143) s(P142,P144) s(P143,P144) s(P140,P145) s(P142,P146) s(P145,P146) s(P144,P147) s(P146,P147) s(P144,P148) s(P147,P148) s(P147,P149) s(P148,P149) s(P148,P150) s(P149,P150) s(P145,P151) s(P146,P151) s(P149,P152) s(P154,P152) s(P155,P152) s(P151,P153) s(P151,P154) s(P153,P154) s(P153,P155) s(P154,P155) s(P152,P156) s(P155,P156) s(P165,P156) s(P166,P156) s(P145,P157) s(P153,P157) s(P140,P158) s(P157,P158) s(P157,P159) s(P158,P159) s(P162,P160) s(P163,P160) s(P159,P161) s(P159,P162) s(P161,P162) s(P161,P163) s(P162,P163) s(P160,P164) s(P160,P165) s(P164,P165) s(P164,P166) s(P165,P166) s(P166,P167) s(P158,P168) s(P161,P168) s(P140,P169) s(P168,P169) s(P168,P170) s(P169,P170) s(P163,P171) s(P173,P171) s(P174,P171) s(P170,P172) s(P170,P173) s(P172,P173) s(P172,P174) s(P173,P174) s(P171,P175) s(P174,P175) s(P184,P175) s(P185,P175) s(P169,P176) s(P172,P176) s(P140,P177) s(P176,P177) s(P176,P178) s(P177,P178) s(P181,P179) s(P182,P179) s(P178,P180) s(P178,P181) s(P180,P181) s(P180,P182) s(P181,P182) s(P179,P183) s(P179,P184) s(P183,P184) s(P183,P185) s(P184,P185) s(P183,P186) s(P177,P187) s(P180,P187) s(P140,P188) s(P187,P188) s(P187,P189) s(P188,P189) s(P182,P190) s(P192,P190) s(P193,P190) s(P189,P191) s(P189,P192) s(P191,P192) s(P191,P193) s(P192,P193) s(P190,P194) s(P193,P194) s(P203,P194) s(P204,P194) s(P188,P195) s(P191,P195) s(P140,P196) s(P195,P196) s(P195,P197) s(P196,P197) s(P200,P198) s(P201,P198) s(P197,P199) s(P197,P200) s(P199,P200) s(P199,P201) s(P200,P201) s(P198,P202) s(P198,P203) s(P202,P203) s(P202,P204) s(P203,P204) s(P202,P205) s(P204,P205) s(P196,P206) s(P199,P206) s(P140,P207) s(P206,P207) s(P206,P208) s(P207,P208) s(P201,P209) s(P211,P209) s(P212,P209) s(P208,P210) s(P208,P211) s(P210,P211) s(P210,P212) s(P211,P212) s(P209,P213) s(P212,P213) s(P222,P213) s(P223,P213) s(P207,P214) s(P210,P214) s(P140,P215) s(P214,P215) s(P214,P216) s(P215,P216) s(P219,P217) s(P220,P217) s(P216,P218) s(P216,P219) s(P218,P219) s(P218,P220) s(P219,P220) s(P230,P220) s(P217,P221) s(P217,P222) s(P221,P222) s(P221,P223) s(P222,P223) s(P355,P223) s(P221,P224) s(P355,P224) s(P215,P225) s(P218,P225) s(P140,P226) s(P225,P226) s(P225,P227) s(P226,P227) s(P141,P228) s(P226,P228) s(P227,P229) s(P228,P229) s(P231,P230) s(P232,P230) s(P227,P231) s(P229,P231) s(P229,P232) s(P231,P232) s(P141,P233) s(P228,P233) s(P143,P234) s(P233,P234) s(P233,P235) s(P234,P235) s(P150,P236) s(P235,P236) s(P205,P237) s(P205,P238) s(P237,P238) s(P237,P239) s(P238,P239) s(P238,P240) s(P239,P240) s(P244,P240) s(P245,P240) s(P237,P241) s(P239,P241) s(P242,P241) s(P242,P243) s(P242,P244) s(P243,P244) s(P243,P245) s(P244,P245) s(P243,P246) s(P245,P246) s(P255,P246) s(P257,P246) s(P241,P247) s(P242,P247) s(P253,P247) s(P254,P247) s(P248,P249) s(P248,P250) s(P249,P250) s(P249,P251) s(P250,P251) s(P250,P252) s(P251,P252) s(P256,P252) s(P257,P252) s(P249,P253) s(P251,P253) s(P254,P253) s(P254,P255) s(P254,P256) s(P255,P256) s(P255,P257) s(P256,P257) s(P248,P258) s(P248,P259) s(P258,P259) s(P258,P260) s(P259,P260) s(P259,P261) s(P260,P261) s(P265,P261) s(P266,P261) s(P258,P262) s(P260,P262) s(P263,P262) s(P263,P264) s(P263,P265) s(P264,P265) s(P264,P266) s(P265,P266) s(P264,P267) s(P266,P267) s(P274,P267) s(P276,P267) s(P262,P268) s(P263,P268) s(P272,P268) s(P273,P268) s(P185,P269) s(P186,P269) s(P186,P270) s(P269,P270) s(P269,P271) s(P270,P271) s(P275,P271) s(P276,P271) s(P186,P272) s(P270,P272) s(P273,P272) s(P273,P274) s(P273,P275) s(P274,P275) s(P274,P276) s(P275,P276) s(P98,P277) s(P236,P277) s(P280,P278) s(P281,P278) s(P28,P279) s(P28,P280) s(P279,P280) s(P279,P281) s(P280,P281) s(P279,P282) s(P281,P282) s(P278,P283) s(P278,P284) s(P283,P284) s(P283,P285) s(P284,P285) s(P284,P286) s(P285,P286) s(P290,P286) s(P291,P286) s(P283,P287) s(P285,P287) s(P288,P287) s(P288,P289) s(P288,P290) s(P289,P290) s(P289,P291) s(P290,P291) s(P289,P292) s(P291,P292) s(P300,P292) s(P302,P292) s(P287,P293) s(P288,P293) s(P298,P293) s(P299,P293) s(P277,P294) s(P277,P295) s(P294,P295) s(P294,P296) s(P295,P296) s(P295,P297) s(P296,P297) s(P301,P297) s(P302,P297) s(P294,P298) s(P296,P298) s(P299,P298) s(P299,P300) s(P299,P301) s(P300,P301) s(P300,P302) s(P301,P302) s(P282,P303) s(P282,P304) s(P303,P304) s(P304,P305) s(P303,P305) s(P304,P306) s(P305,P306) s(P310,P306) s(P311,P306) s(P305,P307) s(P303,P307) s(P307,P308) s(P308,P309) s(P308,P310) s(P309,P310) s(P309,P311) s(P310,P311) s(P309,P312) s(P311,P312) s(P319,P312) s(P320,P312) s(P307,P313) s(P308,P313) s(P321,P313) s(P323,P313) s(P314,P315) s(P314,P316) s(P315,P316) s(P315,P317) s(P316,P317) s(P316,P318) s(P317,P318) s(P322,P318) s(P323,P318) s(P315,P319) s(P317,P319) s(P319,P320) s(P320,P321) s(P320,P322) s(P321,P322) s(P321,P323) s(P322,P323) s(P314,P324) s(P314,P325) s(P324,P325) s(P324,P326) s(P325,P326) s(P325,P327) s(P326,P327) s(P331,P327) s(P332,P327) s(P324,P328) s(P326,P328) s(P329,P328) s(P329,P330) s(P329,P331) s(P330,P331) s(P330,P332) s(P331,P332) s(P330,P333) s(P332,P333) s(P340,P333) s(P342,P333) s(P328,P334) s(P329,P334) s(P338,P334) s(P339,P334) s(P167,P335) s(P164,P335) s(P167,P336) s(P335,P336) s(P335,P337) s(P336,P337) s(P341,P337) s(P342,P337) s(P167,P338) s(P336,P338) s(P339,P338) s(P339,P340) s(P339,P341) s(P340,P341) s(P340,P342) s(P341,P342) s(P343,P344) s(P343,P345) s(P344,P345) s(P344,P346) s(P345,P346) s(P345,P347) s(P346,P347) s(P351,P347) s(P352,P347) s(P344,P348) s(P346,P348) s(P348,P349) s(P349,P350) s(P349,P351) s(P350,P351) s(P350,P352) s(P351,P352) s(P350,P353) s(P352,P353) s(P358,P353) s(P359,P353) s(P348,P354) s(P349,P354) s(P360,P354) s(P362,P354) s(P355,P356) s(P224,P356) s(P224,P357) s(P356,P357) s(P361,P357) s(P362,P357) s(P355,P358) s(P356,P358) s(P358,P359) s(P359,P360) s(P359,P361) s(P360,P361) s(P360,P362) s(P361,P362) s(P343,P363) s(P343,P364) s(P363,P364) s(P363,P365) s(P364,P365) s(P364,P366) s(P365,P366) s(P370,P366) s(P371,P366) s(P363,P367) s(P365,P367) s(P368,P367) s(P368,P369) s(P368,P370) s(P369,P370) s(P369,P371) s(P370,P371) s(P369,P372) s(P371,P372) s(P380,P372) s(P382,P372) s(P367,P373) s(P368,P373) s(P378,P373) s(P379,P373) s(P85,P374) s(P85,P375) s(P374,P375) s(P374,P376) s(P375,P376) s(P375,P377) s(P376,P377) s(P381,P377) s(P382,P377) s(P374,P378) s(P376,P378) s(P379,P378) s(P379,P380) s(P379,P381) s(P380,P381) s(P380,P382) s(P381,P382) s(P96,P383) s(P97,P383) s(P383,P384) s(P97,P384) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10) color(#008000) m(P2,P1,MA11) m(P1,P3,MB11) b(P1,MA11,MB11) pen(2) color(red) s(P81,P91) abstand(P81,P91,A0) print(abs(P81,P91):,0.22,27.831) print(A0,2.82,27.831) color(red) s(P13,P10) abstand(P13,P10,A1) print(abs(P13,P10):,0.22,27.231) print(A1,2.82,27.231) color(red) s(P384,P94) abstand(P384,P94,A2) print(abs(P384,P94):,0.22,26.631) print(A2,2.82,26.631) print(min=0.7631999678546038,0.22,26.031) print(max=1.1949366610677594,0.22,25.431) \geooff \geoprint()


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 3936
Wohnort: Raun
  Beitrag No.1137, eingetragen 2018-04-16

#1133-2 habe ich übersehen, nach meiner Erinnerung stand dort ursprünglich erst ein Versuch. Der rote Kern mit blauer Verbindung bis einschließlich Punkt A ist starr. Daran wird der starre gelbe Kern mit drei nicht parallelen Kanten angeschlossen. Dann ist das Ergebnis immer noch starr, siehe letzten Eingabeschritt in \geo ebene(446.89,477.63) x(5.85,23.73) y(6.61,25.71) form(.) #//Eingabe war: # #No.803 Kern 4/11 mit 813 # # # # # #P[1]=[21.116956469558364,163.38185896887188]; #P[2]=[46.11695646955836,163.38185896887188]; D=ab(1,2); A(2,1); #M(3,1,2,gruenerWinkel); N(4,3,2); L(5,3,4); #M(6,1,3,blauerWinkel); N(7,6,3); N(8,7,5); L(9,8,5); L(10,8,9); L(11,10,9); #L(12,6,7); #Q(13,12,10,ab(11,5,8,9,10),D); L(17,16,13); #N(18,6,14); N(19,1,18); L(20,19,18); #Q(21,20,17,ab(11,5,[8,10]),ab(5,11,[8,10])); L(28,25,27); #N(29,19,22); N(30,1,29); L(31,30,29); #Q(32,31,24,ab(13,12,[14,17]),D); #N(37,30,33); N(38,1,37); L(39,38,37); #Q(40,39,36,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(48,38,41); N(49,1,48); L(50,49,48); #Q(51,50,43,ab(13,12,[14,17]),D); #N(56,49,52); N(57,1,56); L(58,57,56); #Q(59,58,55,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(67,57,60); N(68,1,67); L(69,68,67); #Q(70,69,62,ab(13,12,[14,17]),D); #N(75,68,71); N(76,1,75); L(77,76,75); #Q(78,77,74,ab(21,20,[22,24]),ab(21,17,[25,28])); #N(86,76,79); N(87,1,86); L(88,87,86); # #N(89,2,87); #Q(90,89,88,D,ab(71,69,[70,74])); #L(95,2,89); N(96,4,95); L(97,96,95); N(98,11,97); L(99,98,97); L(100,98,99); # #A(81,91); R(81,91); #A(11,96); R(11,96); #R(18,29); # #Z(94); N(94,99,93); N(101,94,91); N(102,100,94); N(103,102,101); #Q(104,103,101,ab(91,94,[1,100],"gespiegelt"),D); # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: nolabel() p(10.844678258782334,16.535274358754876,P1) p(11.844678258782334,16.535274358754876,P2) p(11.689356517564669,17.07054871750975,P3) p(12.689356517564669,17.07054871750975,P4) p(12.189356517564669,17.936574121294193,P5) p(11.139476014789365,17.490834028819084,P6) p(11.9841542735717,18.02610838757396,P7) p(12.484154273571697,18.892133791358397,P8) p(13.164294344675664,18.159051610645562,P9) p(13.459092100682692,19.11461128070977,P10) p(14.13923217178666,18.381529099996932,P11) p(11.098253951504384,18.48998403832643,P12) p(12.669168207582379,19.727816175593404,P13) p(10.954985477276892,19.47966789910851,P14) p(11.883711079543382,19.108900106959915,P15) p(11.740442605315888,20.098583967741995,P16) p(12.525899733354885,20.717500036375483,P17) p(10.996207540561853,18.480517889601163,P18) p(10.701409784554821,17.524958219536956,P19) p(10.021269713450856,18.258040400249797,P20) p(10.601744065137929,20.171949887930303,P21) p(9.337641182934936,18.987870539573073,P22) p(10.311506889294392,19.21499514409005,P23) p(9.62787835877847,19.94482528341333,P24) p(10.84655283839622,21.14152126979745,P25) p(11.563821899246408,20.44472496215289,P26) p(11.8086306725047,21.414296344020038,P27) p(11.091361611654513,22.1110926516646,P28) p(10.017781254038447,18.254788358859813,P29) p(10.161049728265962,17.265104498077733,P30) p(9.232324125999462,17.63587229022631,P31) p(8.703002754041805,19.564555490025814,P32) p(8.264849459570735,17.888840212735506,P33) p(8.967663440020633,18.600213890126064,P34) p(8.000188773591905,18.853181812635256,P35) p(7.735528087613076,19.81752341253501,P36) p(9.19357506183723,17.518072420586922,P37) p(9.877203592353602,16.78824228126406,P38) p(8.903337885994283,16.561117676746488,P39) p(7.37436944858621,17.850402562801506,P40) p(7.962819044622781,16.22137614407025,P41) p(8.138853667290247,17.205760119774,P42) p(7.198334825918742,16.866018587097756,P43) p(6.612870794251305,18.49856905333162,P44) p(7.554948768099643,18.833962987668258,P45) p(6.793450113764736,19.482129478198374,P46) p(5.851372139916398,19.146735543861737,P47) p(8.936684750982103,16.4485007485878,P48) p(9.904159417410836,16.19553282607862,P49) p(9.201345436960944,15.484159148688054,P50) p(7.2382935340525485,15.866817255210997,P51) p(8.544886640627386,14.729797266885763,P52) p(8.219819485506745,15.675488201949523,P53) p(7.5633606891731855,14.921126320147234,P54) p(6.5818347377189905,15.112455373408705,P55) p(9.247700621077316,15.441170944276292,P56) p(10.188219462448814,15.780912476952551,P57) p(10.012184839781366,14.796528501248796,P58) p(8.203789402696799,13.942300227816155,P59) p(9.929977673222018,13.799913238589088,P60) p(9.107987121239082,14.369414364532474,P61) p(9.025779954679734,13.372799101872767,P62) p(7.291608695226234,13.532512042385562,P63) p(7.392812070207895,14.527377800612431,P64) p(6.480631362737329,14.117589615181837,P65) p(6.379427987755668,13.12272385695497,P66) p(10.106012295889485,14.784297214292838,P67) p(10.762471092223006,15.538659096095165,P68) p(11.087538247343694,14.592968161031418,P69) p(9.935679090189922,12.95796954265861,P70) p(11.507548627386905,13.685448860599768,P71) p(10.511608668766808,13.775468851845012,P72) p(10.93161904881002,12.867949551413362,P73) p(10.355689470233134,12.050450242226958,P74) p(11.182481472266241,14.631139795663522,P75) p(11.264688638825572,15.627755058323235,P76) p(12.086679190808518,15.058253932379863,P77) p(12.083209558670664,13.05825694196892,P78) p(12.951835883368203,14.556752289990541,P79) p(12.08494437473959,14.058255437174392,P80) p(12.950101067299276,13.556753794785072,P81) p(12.087722638601628,12.05826712596601,P82) p(11.219449514451899,12.554353592097941,P83) p(11.223962594382863,11.55436377609503,P84) p(12.092235718532592,11.058277309963099,P85) p(12.129845331385265,15.126253415933931,P86) p(11.70983495134203,16.033772716365576,P87) p(12.705774909962134,15.943752725120351,P88) p(12.70983495134203,16.033772716365572,P89) p(13.70577490996213,15.94375272512033,P90) p(13.705774909962095,14.211701917551455,P91) p(13.205774909962116,15.077727321335903,P92) p(14.205774909962113,15.07772732133588,P93) p(15.064750549227115,15.589743777271899,P94) p(12.711569767410937,17.033771211571043,P95) p(13.556248026193273,17.56904557032592,P96) p(13.59747008947825,16.569895560818573,P97) p(14.180454235071698,17.38237909048959,P98) p(14.592593539126524,16.471258245566588,P99) p(15.175577684719972,17.28374177523761,P100) p(14.564750549227101,14.723718373487467,P101) p(15.647734694820564,16.402227306942915,P102) p(15.147734694820553,15.536201903158485,P103) p(14.452259305446916,13.730065657457974,P104) p(17.74848497396677,12.080896388067197,P105) p(17.336345669911957,12.992017232990205,P106) p(17.888059490256353,13.071107958592673,P107) p(17.47592018620154,13.982228803515682,P108) p(18.471043635849817,13.883591488263683,P109) p(18.497617565932366,12.743316466004838,P110) p(18.63719208222195,13.733528036530313,P111) p(19.22017622781541,14.54601156620132,P112) p(18.27193731636175,14.863569382677591,P113) p(19.02106990832735,15.525989460615229,P114) p(18.072830996873687,15.8435472770915,P115) p(19.424953199273506,13.117547174439872,P116) p(19.905332353823272,15.058999174329141,P117) p(20.385721363977048,13.394899898767893,P118) p(19.665142776548393,14.088273174384506,P119) p(20.62591094125193,14.365625898712526,P120) p(20.86610051852682,15.33635189865716,P121) p(19.458385730635918,13.020669190332839,P122) p(18.709253138670327,12.3582491123952,P123) p(19.657492050123984,12.040691295918936,P124) p(21.16205858431963,13.35837090196074,P125) p(20.604205690113332,11.718614777280717,P126) p(20.409775317221808,12.699531098939836,P127) p(21.356488957211155,12.377454580301618,P128) p(21.94455996354241,13.981019752850587,P129) p(21.01407955142323,14.347361400308952,P130) p(21.79658093064601,14.970010251198799,P131) p(22.727061342765193,14.603668603740438,P132) p(19.655966778659476,12.036172593756397,P133) p(18.695198613955917,11.758819869428395,P134) p(19.415777201384568,11.065446593811764,P135) p(21.39119480983467,11.378057009865474,P136) p(20.04499588439216,10.288218281824749,P137) p(20.403486005609615,11.221751801838618,P138) p(21.032704688617216,10.444523489851598,P139) p(22.020413492842266,10.600828697878454,P140) p(19.324417296963503,10.981591557441373,P141) p(18.377703656974354,11.303668076080172,P142) p(18.572134029865275,10.322751754420933,P143) p(20.376976352309324,9.46104171553618,P144) p(18.65021321829115,9.325804594168817,P145) p(19.474555191087305,9.891896734978554,P146) p(19.55263437951318,8.89494957472644,P147) p(21.281377878248165,9.03435930450956,P148) p(21.198694922575797,10.030935206707316,P149) p(22.103096448514638,9.604252795680694,P150) p(22.18577940418701,8.607676893482932,P151) p(18.455782845400208,10.306720915828057,P152) p(17.826564162392625,11.083949227815083,P153) p(17.468074041175157,10.150415707801214,P154) p(18.625772663595118,8.519546645108896,P155) p(17.051311677511322,9.241400233657169,P156) p(18.04692335238514,9.334981176455054,P157) p(17.630160988721293,8.425965702311007,P158) p(18.20901029993128,7.610531170964847,P159) p(17.40980179872874,10.174933753671054,P160) p(17.33172261030288,11.17188091392317,P161) p(16.50738063750672,10.60578877311345,P162) p(16.474386288155582,8.606060948405572,P163) p(15.633224501743129,10.120143789296197,P164) p(16.49088346283115,9.60592486075951,P165) p(15.616727327067558,9.12027987694226,P166) p(16.476965252355736,7.606064273939277,P167) p(17.34169829404342,8.10829605968521,P168) p(17.344277258243586,7.108299385218914,P169) p(16.479544216555894,6.606067599472983,P170) p(16.457566474539277,10.686235930105934,P171) p(16.87432883820317,11.595251404249957,P172) p(15.878717163329341,11.501670461452123,P173) p(14.86376227210807,9.778340380247128,P174) p(14.878754625809314,11.510326300897319,P175) p(15.371239717718705,10.640005420849626,P176) p(14.371277180198677,10.648661260294821,P177) p(13.863799734588042,9.786996219692325,P178) p(15.874366300683137,11.603907243695181,P179) p(16.74852243644674,12.08955222751242,P180) p(15.890863475358728,12.603771156049119,P181) p(14.070054499386659,11.776332534144425,P182) p(15.077369798044785,13.185344914888216,P183) p(14.980458987372693,12.190051845096772,P184) p(14.16696531005875,12.771625603935869,P185) p(13.157082915693795,11.36830938851499,P186) p(13.966927116987353,10.781664376918373,P187) p(13.053955533294493,10.373641231288937,P188) p(12.244111332000926,10.960286242885559,P189) p(15.935028759132807,12.671125986351532,P190) p(16.934991296652836,12.662470146906312,P191) p(16.442506204743463,13.532791026954019,P192) p(16.522851992598028,13.573590991829318,P193) p(16.030366900688634,14.443911871877017,P194) p(15.447382755095187,13.631428342205997,P195) p(15.035243451040358,14.542549187128994,P196) p(17.43325648058407,13.98731030278165,P197) p(17.57283099687365,14.977521873307126,P198) p(16.64549536353251,14.603291164872088,P199) p(17.145495363532525,15.469316568656517,P200) p(16.145495363532525,15.469316568656534,P201) p(16.64549536353254,16.335341972440965,P202) nolabel() s(P1,P2) s(P1,P3) s(P3,P4) s(P2,P4) s(P3,P5) s(P4,P5) s(P1,P6) s(P6,P7) s(P3,P7) s(P7,P8) s(P5,P8) s(P8,P9) s(P5,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P96,P11) s(P6,P12) s(P7,P12) s(P15,P13) s(P16,P13) s(P10,P13) s(P12,P14) s(P12,P15) s(P14,P15) s(P14,P16) s(P15,P16) s(P16,P17) s(P13,P17) s(P26,P17) s(P27,P17) s(P6,P18) s(P14,P18) s(P1,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P23,P21) s(P24,P21) s(P20,P22) s(P20,P23) s(P22,P23) s(P22,P24) s(P23,P24) s(P21,P25) s(P21,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P25,P28) s(P27,P28) s(P19,P29) s(P22,P29) s(P1,P30) s(P29,P30) s(P30,P31) s(P29,P31) s(P34,P32) s(P35,P32) s(P24,P32) s(P31,P33) s(P31,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P32,P36) s(P35,P36) s(P45,P36) s(P46,P36) s(P30,P37) s(P33,P37) s(P1,P38) s(P37,P38) s(P38,P39) s(P37,P39) s(P42,P40) s(P43,P40) s(P39,P41) s(P39,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P40,P44) s(P40,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P46,P47) s(P38,P48) s(P41,P48) s(P1,P49) s(P48,P49) s(P49,P50) s(P48,P50) s(P53,P51) s(P54,P51) s(P43,P51) s(P50,P52) s(P50,P53) s(P52,P53) s(P52,P54) s(P53,P54) s(P51,P55) s(P54,P55) s(P64,P55) s(P65,P55) s(P49,P56) s(P52,P56) s(P1,P57) s(P56,P57) s(P57,P58) s(P56,P58) s(P61,P59) s(P62,P59) s(P58,P60) s(P58,P61) s(P60,P61) s(P60,P62) s(P61,P62) s(P59,P63) s(P59,P64) s(P63,P64) s(P63,P65) s(P64,P65) s(P63,P66) s(P65,P66) s(P57,P67) s(P60,P67) s(P1,P68) s(P67,P68) s(P68,P69) s(P67,P69) s(P72,P70) s(P73,P70) s(P62,P70) s(P69,P71) s(P69,P72) s(P71,P72) s(P71,P73) s(P72,P73) s(P70,P74) s(P73,P74) s(P83,P74) s(P84,P74) s(P68,P75) s(P71,P75) s(P1,P76) s(P75,P76) s(P76,P77) s(P75,P77) s(P80,P78) s(P81,P78) s(P77,P79) s(P77,P80) s(P79,P80) s(P79,P81) s(P80,P81) s(P91,P81) s(P78,P82) s(P78,P83) s(P82,P83) s(P82,P84) s(P83,P84) s(P82,P85) s(P84,P85) s(P76,P86) s(P79,P86) s(P1,P87) s(P86,P87) s(P87,P88) s(P86,P88) s(P2,P89) s(P87,P89) s(P89,P90) s(P88,P90) s(P92,P91) s(P93,P91) s(P88,P92) s(P90,P92) s(P90,P93) s(P92,P93) s(P99,P94) s(P93,P94) s(P2,P95) s(P89,P95) s(P4,P96) s(P95,P96) s(P96,P97) s(P95,P97) s(P11,P98) s(P97,P98) s(P98,P99) s(P97,P99) s(P98,P100) s(P99,P100) s(P94,P101) s(P91,P101) s(P100,P102) s(P94,P102) s(P102,P103) s(P101,P103) s(P196,P103) s(P201,P103) s(P195,P104) s(P196,P104) s(P101,P104) s(P105,P106) s(P105,P107) s(P106,P108) s(P107,P108) s(P107,P109) s(P108,P109) s(P105,P110) s(P107,P111) s(P110,P111) s(P109,P112) s(P111,P112) s(P109,P113) s(P112,P113) s(P112,P114) s(P113,P114) s(P113,P115) s(P114,P115) s(P198,P115) s(P110,P116) s(P111,P116) s(P114,P117) s(P119,P117) s(P120,P117) s(P116,P118) s(P116,P119) s(P118,P119) s(P118,P120) s(P119,P120) s(P117,P121) s(P120,P121) s(P130,P121) s(P131,P121) s(P110,P122) s(P118,P122) s(P105,P123) s(P122,P123) s(P122,P124) s(P123,P124) s(P127,P125) s(P128,P125) s(P124,P126) s(P124,P127) s(P126,P127) s(P126,P128) s(P127,P128) s(P125,P129) s(P125,P130) s(P129,P130) s(P129,P131) s(P130,P131) s(P129,P132) s(P131,P132) s(P123,P133) s(P126,P133) s(P105,P134) s(P133,P134) s(P133,P135) s(P134,P135) s(P128,P136) s(P138,P136) s(P139,P136) s(P135,P137) s(P135,P138) s(P137,P138) s(P137,P139) s(P138,P139) s(P136,P140) s(P139,P140) s(P149,P140) s(P150,P140) s(P134,P141) s(P137,P141) s(P105,P142) s(P141,P142) s(P141,P143) s(P142,P143) s(P146,P144) s(P147,P144) s(P143,P145) s(P143,P146) s(P145,P146) s(P145,P147) s(P146,P147) s(P144,P148) s(P144,P149) s(P148,P149) s(P148,P150) s(P149,P150) s(P148,P151) s(P150,P151) s(P142,P152) s(P145,P152) s(P105,P153) s(P152,P153) s(P152,P154) s(P153,P154) s(P147,P155) s(P157,P155) s(P158,P155) s(P154,P156) s(P154,P157) s(P156,P157) s(P156,P158) s(P157,P158) s(P155,P159) s(P158,P159) s(P168,P159) s(P169,P159) s(P153,P160) s(P156,P160) s(P105,P161) s(P160,P161) s(P160,P162) s(P161,P162) s(P165,P163) s(P166,P163) s(P162,P164) s(P162,P165) s(P164,P165) s(P164,P166) s(P165,P166) s(P163,P167) s(P163,P168) s(P167,P168) s(P167,P169) s(P168,P169) s(P167,P170) s(P169,P170) s(P161,P171) s(P164,P171) s(P105,P172) s(P171,P172) s(P171,P173) s(P172,P173) s(P166,P174) s(P176,P174) s(P177,P174) s(P173,P175) s(P173,P176) s(P175,P176) s(P175,P177) s(P176,P177) s(P174,P178) s(P177,P178) s(P187,P178) s(P188,P178) s(P172,P179) s(P175,P179) s(P105,P180) s(P179,P180) s(P179,P181) s(P180,P181) s(P184,P182) s(P185,P182) s(P181,P183) s(P181,P184) s(P183,P184) s(P183,P185) s(P184,P185) s(P104,P185) s(P182,P186) s(P182,P187) s(P186,P187) s(P186,P188) s(P187,P188) s(P186,P189) s(P188,P189) s(P180,P190) s(P183,P190) s(P105,P191) s(P190,P191) s(P190,P192) s(P191,P192) s(P106,P193) s(P191,P193) s(P192,P194) s(P193,P194) s(P192,P195) s(P194,P195) s(P194,P196) s(P195,P196) s(P106,P197) s(P193,P197) s(P108,P198) s(P197,P198) s(P197,P199) s(P198,P199) s(P115,P200) s(P199,P200) s(P199,P201) s(P200,P201) s(P200,P202) s(P201,P202) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10) color(#008000) m(P2,P1,MA11) m(P1,P3,MB11) b(P1,MA11,MB11) pen(2) color(red) s(P81,P91) abstand(P81,P91,A0) print(abs(P81,P91):,5.85,25.711) print(A0,8.45,25.711) color(red) s(P11,P96) abstand(P11,P96,A1) print(abs(P11,P96):,5.85,25.111) print(A1,8.45,25.111) color(red) s(P18,P29) abstand(P18,P29,A2) print(abs(P18,P29):,5.85,24.511) print(A2,8.45,24.511) print(min=0.9999999999999606,5.85,23.911) print(max=1.000000000000008,5.85,23.311) color(blue) color(orange) color(red) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1138, eingetragen 2018-04-16

guten morgen stefan in die dunkelheit stimmt da kam ein weiterer versuch dazu... bei dem eben A-C weg-organisiert wurde... es müsste aber eben auch noch A-B weg, irgendwie (meine hoffnung war das slash dat mal eben erfindet...) aber was anderes, gibt es den kern mit 5 x2er längen welchen wir in #1134 und #1135 skizzierten? haribo


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 3936
Wohnort: Raun
  Beitrag No.1139, eingetragen 2018-04-16

ebenfalls guten Morgen haribo, ja den Kern mit den 5x2er Dreiecken, da muss ich auch erst suchen oder probieren, durchaus möglich, dass wir das schon mal hatten... EDIT (ha, kann ich auch): \quoteon stimmt da kam ein weiterer versuch dazu... \quoteoff falls keine neuen Beiträge sind, muss man halt auch später nochmal in dem Thread reinschauen, wenn man auf dem Laufenden bleiben will. Den zweiten Versuch hätte ich eher sehen können.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1140, vom Themenstarter, eingetragen 2018-04-16

hab's gefunden, die 5er Variante: hier. War ganz schön weit vorne im Thread ...und geht nicht.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1141, vom Themenstarter, eingetragen 2018-04-17

Es würde an ein Wunder grenzen, wenn man den hier zurechtziehen könnte, aber gemäß dem Motto: Es gibt keine schlechten Ideen... ;-) http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_11_slash_neu_5.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1142, vom Themenstarter, eingetragen 2018-04-17

Vielleicht sind wir jetzt auch soweit einen Beweis für eine untere Knoten-Schranke zu führen. Mindestens 34 Knoten bzw. 68 Kanten sind bewiesenes(?) Minimum. Wir könnten mal 35 Knoten angehen. Eine Methode wäre die Konstruktion der äußeren Dreickshülle und dann veruchen sie zu füllen. So viele Möglichkeiten für die Hülle bei insgesamt 35 Knoten gibt es ja nicht. Angefangen bei einzelnen Dreiecken, dann mit einem 5-knotigen Teilgraph dazwischen, usw.


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1143, vom Themenstarter, eingetragen 2018-04-17

Fast 108er - schon mal dagewesen? P28,P54 = P14,P41. \geo ebene(487.35,480.26) x(8.1,15.3) y(9.29,16.38) form(.) #//Eingabe war: # #Fig.1a 4-regular matchstick graph with 52 vertices. The #Harborth graph. This graph is rigid. # # # #P[1]=[-87.33114848881186,26.970263067625446]; #P[2]=[-24.443638053342493,1.877313015074094]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2); #N(12,8,3); N(13,12,6); N(14,12,13); N(15,10,14); #A(15,11,ab(15,11,[1,15],"gespiegelt"),Bew(2)); #A(7,22,ab(7,22,[1,28],"gespiegelt"),Bew(2)); #A(13,40,Bew(4)); R(13,40); #A(27,53); #R(14,41); # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.710196905333817,10.398326706685197,P1) p(9.638989289026236,10.027726237183401,P2) p(9.495542518423022,11.017384271053439,P3) p(10.424334902115442,10.646783801551644,P4) p(10.567781672718658,9.657125767681606,P5) p(11.353127285807863,10.276183332049849,P6) p(11.496574056411077,9.28652529817981,P7) p(9.384073366560227,11.137170746388415,P8) p(8.407277428129316,11.351342860971236,P9) p(9.081153889355726,12.090186900674455,P10) p(8.104357950924815,12.304359015257276,P11) p(10.169418979649432,11.756228310756658,P12) p(11.01078170628973,11.215757439922342,P13) p(11.058161847117596,12.214634370407342,P14) p(10.061001024413493,12.289935722746293,P15) p(8.73822997740212,14.201252858899968,P16) p(9.672384855929762,14.558120709683717,P17) p(9.51436404123862,13.570684928417739,P18) p(10.44851891976626,13.927552779201484,P19) p(10.606539734457401,14.91498856046746,P20) p(11.382673798293899,14.284420629985231,P21) p(11.540694612985043,15.271856411251207,P22) p(9.401141099221235,13.45255475915046,P23) p(8.42129396416347,13.252805937078623,P24) p(9.084205085982582,12.504107837329116,P25) p(10.177275163057732,12.821986828668232,P26) p(11.0265141311214,13.349995517159394,P27) p(11.05916358474182,12.350528652687,P28) p(14.299038691994,10.357128850531048,P29) p(13.364883813466358,10.000260999747303,P30) p(13.5229046281575,10.987696781013277,P31) p(12.58874974962986,10.630828930229532,P32) p(12.430728934938717,9.643393148963556,P33) p(11.65459487110222,10.273961079445787,P34) p(13.636127570174885,11.105826950280555,P35) p(14.61597470523265,11.305575772352395,P36) p(13.953063583413538,12.054273872101902,P37) p(14.932910718471303,12.254022694173742,P38) p(12.859993506338387,11.736394880762784,P39) p(12.010754538274718,11.208386192271622,P40) p(11.9781050846543,12.207853056744021,P41) p(12.976267644982627,12.268445986684725,P42) p(14.327071764062303,14.160055002745818,P43) p(13.398279380369878,14.530655472247618,P44) p(13.541726150973096,13.540997438377579,P45) p(12.612933767280673,13.911597907879374,P46) p(12.469486996677455,14.901255941749412,P47) p(11.684141383588262,14.282198377381167,P48) p(13.653195302835893,13.4212109630426,P49) p(14.629991241266803,13.207038848459781,P50) p(13.956114780040394,12.468194808756563,P51) p(12.867849689746688,12.80215339867436,P52) p(12.02648696310639,13.342624269508672,P53) p(11.979106822278519,12.34374733902368,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P4,P6) s(P5,P6) s(P6,P7) s(P5,P7) s(P33,P7) s(P34,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P24,P11) s(P25,P11) s(P8,P12) s(P3,P12) s(P12,P13) s(P6,P13) s(P40,P13) s(P12,P14) s(P13,P14) s(P10,P15) s(P14,P15) s(P25,P15) s(P28,P15) s(P16,P17) s(P16,P18) s(P17,P18) s(P17,P19) s(P18,P19) s(P17,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P47,P22) s(P48,P22) s(P16,P23) s(P16,P24) s(P23,P24) s(P23,P25) s(P24,P25) s(P18,P26) s(P23,P26) s(P21,P27) s(P26,P27) s(P53,P27) s(P26,P28) s(P27,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P50,P38) s(P51,P38) s(P31,P39) s(P35,P39) s(P34,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P37,P42) s(P41,P42) s(P51,P42) s(P54,P42) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P43,P49) s(P43,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P45,P52) s(P49,P52) s(P48,P53) s(P52,P53) s(P52,P54) s(P53,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10) pen(2) color(red) s(P13,P40) abstand(P13,P40,A0) print(abs(P13,P40):,8.1,16.38) print(A0,9.06,16.38) color(red) s(P14,P41) abstand(P14,P41,A1) print(abs(P14,P41):,8.1,16.158) print(A1,9.06,16.158) print(min=0.9999999999999912,8.1,15.936) print(max=1.0000000000000056,8.1,15.715) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1144, eingetragen 2018-04-20

\quoteon(2018-04-17 23:52 - Slash in Beitrag No. 1143) Fast 108er - schon mal dagewesen? P28,P54 = P14,P41. \quoteoff er kann es, super!!! dranbleiben wie sieht er aus, der graf, wenn du 14-41 auf eins ziehst anstelle 13-40? haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1145, vom Themenstarter, eingetragen 2018-04-20

\quoteon(2018-04-20 05:19 - haribo in Beitrag No. 1144) \quoteon(2018-04-17 23:52 - Slash in Beitrag No. 1143) Fast 108er - schon mal dagewesen? P28,P54 = P14,P41. \quoteoff er kann es, super!!! dranbleiben wie sieht er aus, der graf, wenn du 14-41 auf eins ziehst anstelle 13-40? haribo \quoteoff Fast genauso, in der Mitte etwas schmaler. Es ist sogar eine leicht bessere Lösung. \geo ebene(494.02,473.53) x(8.07,15.37) y(9.32,16.32) form(.) #//Eingabe war: # #Fig.1a 4-regular matchstick graph with 52 vertices. The #Harborth graph. This graph is rigid. # # # #P[1]=[-86.59151974835706,26.048617285267028]; #P[2]=[-23.275655022301923,2.0570274024978517]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2); #N(12,8,3); N(13,12,6); N(14,12,13); N(15,10,14); #A(15,11,ab(15,11,[1,15],"gespiegelt"),Bew(2)); #A(7,22,ab(7,22,[1,28],"gespiegelt"),Bew(2)); #A(14,41,Bew(4)); R(14,41); #A(28,54); #R(13,40); # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.721120561496026,10.384714821317353,P1) p(9.656239355629296,10.03038045823816,P2) p(9.495542518423022,11.017384271053439,P3) p(10.430661312556293,10.663049907974246,P4) p(10.591358149762568,9.676046095158966,P5) p(11.365780106689563,10.308715544895053,P6) p(11.526476943895839,9.321711732079773,P7) p(9.378522196324266,11.138255192183545,P8) p(8.397236274962875,11.330811523001124,P9) p(9.054637909791115,12.084351893867318,P10) p(8.073351988429724,12.276908224684897,P11) p(10.15294415325126,11.770924641919631,P12) p(10.99999675342666,11.23941557093768,P13) p(11.036770811151197,12.238739176522213,P14) p(10.037258790958887,12.269975717481287,P15) p(8.734462976002899,14.164481339059549,P16) p(9.672060005336828,14.512205095199665,P17) p(9.504399096986548,13.5263603712136,P18) p(10.441996126320477,13.874084127353717,P19) p(10.609657034670757,14.859928851339781,P20) p(11.379593155654407,14.221807883493831,P21) p(11.547254064004685,15.207652607479897,P22) p(9.386528363384084,13.406318605486192,P23) p(8.403907482216312,13.220694781872222,P24) p(9.055972869597497,12.462532048298867,P25) p(10.156464484367735,12.768197637640245,P26) p(11.007248337161457,13.293713418398037,P27) p(11.036966426990457,12.29415509837019,P28) p(14.339268031897625,10.364883000500123,P29) p(13.401671002563695,10.017159244360007,P30) p(13.569331910913974,11.00300396834607,P31) p(12.631734881580044,10.655280212205954,P32) p(12.464073973229766,9.66943548821989,P33) p(11.694137852246117,10.307556456065837,P34) p(13.68720264451644,11.123045734073479,P35) p(14.669823525684212,11.308669557687448,P36) p(14.017758138303023,12.066832291260805,P37) p(15.000379019470797,12.252456114874775,P38) p(12.917266523532788,11.761166701919425,P39) p(12.066482670739067,11.235650921161634,P40) p(12.03676458091007,12.235209241189493,P41) p(13.036472216941636,12.259388622078383,P42) p(14.352610446404494,14.14464951824232,P43) p(13.417491652271224,14.49898388132151,P44) p(13.5781884894775,13.511980068506231,P45) p(12.643069695344225,13.866314431585424,P46) p(12.48237285813795,14.853318244400704,P47) p(11.707950901210966,14.220648794664616,P48) p(13.695208811576256,13.391109147376126,P49) p(14.676494732937645,13.198552816558546,P50) p(14.019093098109408,12.445012445692354,P51) p(12.920786854649261,12.75843969764004,P52) p(12.073734254473859,13.289948768621992,P53) p(12.036960196749328,12.290625163037468,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P4,P6) s(P5,P6) s(P6,P7) s(P5,P7) s(P33,P7) s(P34,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P24,P11) s(P25,P11) s(P8,P12) s(P3,P12) s(P12,P13) s(P6,P13) s(P12,P14) s(P13,P14) s(P41,P14) s(P10,P15) s(P14,P15) s(P25,P15) s(P28,P15) s(P16,P17) s(P16,P18) s(P17,P18) s(P17,P19) s(P18,P19) s(P17,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P47,P22) s(P48,P22) s(P16,P23) s(P16,P24) s(P23,P24) s(P23,P25) s(P24,P25) s(P18,P26) s(P23,P26) s(P21,P27) s(P26,P27) s(P26,P28) s(P27,P28) s(P54,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P50,P38) s(P51,P38) s(P31,P39) s(P35,P39) s(P34,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P37,P42) s(P41,P42) s(P51,P42) s(P54,P42) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P43,P49) s(P43,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P45,P52) s(P49,P52) s(P48,P53) s(P52,P53) s(P52,P54) s(P53,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10) pen(2) color(red) s(P14,P41) abstand(P14,P41,A0) print(abs(P14,P41):,8.07,16.315) print(A0,9.03,16.315) color(red) s(P13,P40) abstand(P13,P40,A1) print(abs(P13,P40):,8.07,16.094) print(A1,9.03,16.094) print(min=0.9999999999999885,8.07,15.872) print(max=1.0000000000000078,8.07,15.651) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1146, eingetragen 2018-04-20

ok, zur weiteren übung: jetzt 14-54...14-53...14-27 es sollte irgendwie spielerisch werden p6-13-12 in die andere richtung durchdrücken wäre auch ne challenge, könnte aber auch im chaos enden?


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1147, vom Themenstarter, eingetragen 2018-04-20

\quoteon(2018-04-20 18:13 - haribo in Beitrag No. 1146) ok, zur weiteren übung: jetzt 14-54...14-53...14-27 es sollte irgendwie spielerisch werden p6-13-12 in die andere richtung durchdrücken wäre auch ne challenge, könnte aber auch im chaos enden? \quoteoff Ich hab schon 2-3 Stunden lang alle Varianten probiert. Ein korrekter Graph kam nicht dabei raus. Mit dem Code kannst du leicht selbst rumprobieren. \sourceon MGC Language # #bla bla bla # # # #P[1]=[-86.59151974835706,26.048617285267028]; #P[2]=[-23.275655022301923,2.0570274024978517]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2); #N(12,8,3); N(13,12,6); N(14,12,13); N(15,10,14); #A(15,11,ab(15,11,[1,15],"gespiegelt"),Bew(2)); #A(7,22,ab(7,22,[1,28],"gespiegelt"),Bew(2)); #A(14,41,Bew(4)); R(14,41); #A(28,54); #R(13,40); # # # # # # \sourceoff


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1148, vom Themenstarter, eingetragen 2018-04-20

Interessant ist, dass auch diese Variante hinhaut, aber leider nur mit 3er- und 6er Knoten. Die Mitte ist auch fast eins. P14,P41 = 1.07735703396525428488 \geo ebene(477.37,458.51) x(8.24,15.29) y(9.32,16.09) form(.) #//Eingabe war: # #bla bla bla # # # #P[1]=[-86.59151974835706,26.048617285267028]; #P[2]=[-23.275655022301923,2.0570274024978517]; D=ab(1,2); A(2,1,Bew(1)); #L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blue_angle,2); #N(12,8,3); N(13,12,6); N(14,12,13); N(15,14,10); #A(14,11,ab(14,11,[1,15],"gespiegelt"),Bew(2)); #R(15,28); //Z(13,14); Z(27,14); N(55,13,40); #A(7,22,ab(7,22,[1,28],"gespiegelt"),Bew(2)); # # # # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.721120561496026,10.384714821317353,P1) p(9.656239355629296,10.03038045823816,P2) p(9.495542518423022,11.017384271053439,P3) p(10.430661312556293,10.663049907974246,P4) p(10.591358149762568,9.676046095158966,P5) p(11.365780106689563,10.308715544895053,P6) p(11.526476943895839,9.321711732079773,P7) p(9.441467131103833,11.07832913752937,P8) p(8.48060622803175,11.355360408232698,P9) p(9.200952797639557,12.048974724444715,P10) p(8.240091894567474,12.326005995148043,P11) p(10.21588908803083,11.710998587265458,P12) p(11.11692619518406,11.277256576926433,P13) p(11.04203924124957,12.274448606643084,P14) p(10.166961689104452,11.790465882021937,P15) p(8.792212430511404,14.248286649420198,P16) p(9.73973369795861,14.567979388992494,P17) p(9.54283509811006,13.587555530971038,P18) p(10.490356365557265,13.907248270543336,P19) p(10.687254965405813,14.887672128564795,P20) p(11.43787763300447,14.226941010115635,P21) p(11.634776232853019,15.207364868137091,P22) p(9.48655423642695,13.528641280812897,P23) p(8.51615216253944,13.28714632228412,P24) p(9.210493968454987,12.56750095367682,P25) p(10.237176904025606,12.867910162363737,P26) p(11.153560856061109,13.26821061508868,P27) p(10.185359130662292,12.790296634771686,P28) p(14.369040746237452,10.28078995079667,P29) p(13.421519478790248,9.961097211224372,P30) p(13.618418078638795,10.94152106924583,P31) p(12.670896811191591,10.62182832967353,P32) p(12.473998211343043,9.641404471652072,P33) p(11.723375543744387,10.302135590101232,P34) p(13.674698940321905,11.00043531940397,P35) p(14.645101014209416,11.241930277932747,P36) p(13.95075920829387,11.961575646540048,P37) p(14.92116128218138,12.203070605068827,P38) p(12.92407627272325,11.66116643785313,P39) p(12.007692320687749,11.260865985128186,P40) p(12.119213935499285,12.254627993573783,P41) p(12.975894046086564,11.738779965445183,P42) p(14.440132615252828,14.144361778899516,P43) p(13.50501382111956,14.498696141978705,P44) p(13.665710658325837,13.511692329163427,P45) p(12.730591864192563,13.86602669224262,P46) p(12.569895026986282,14.853030505057902,P47) p(11.79547307005928,14.220361055321813,P48) p(13.719786045645023,13.450747462687495,P49) p(14.680646948717104,13.17371619198417,P50) p(13.960300379109299,12.480101875772155,P51) p(12.945364088718028,12.81807801295141,P52) p(12.044326981564794,13.251820023290433,P53) p(12.994291487644402,12.73861071819493,P54) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P4,P6) s(P5,P6) s(P6,P7) s(P5,P7) s(P33,P7) s(P34,P7) s(P1,P8) s(P1,P9) s(P8,P9) s(P9,P10) s(P8,P10) s(P9,P11) s(P10,P11) s(P24,P11) s(P25,P11) s(P8,P12) s(P3,P12) s(P12,P13) s(P6,P13) s(P12,P14) s(P13,P14) s(P26,P14) s(P27,P14) s(P14,P15) s(P10,P15) s(P16,P17) s(P16,P18) s(P17,P18) s(P17,P19) s(P18,P19) s(P17,P20) s(P19,P20) s(P19,P21) s(P20,P21) s(P20,P22) s(P21,P22) s(P47,P22) s(P48,P22) s(P16,P23) s(P16,P24) s(P23,P24) s(P23,P25) s(P24,P25) s(P18,P26) s(P23,P26) s(P21,P27) s(P26,P27) s(P25,P28) s(P14,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P50,P38) s(P51,P38) s(P31,P39) s(P35,P39) s(P34,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P52,P41) s(P53,P41) s(P37,P42) s(P41,P42) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P44,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P43,P49) s(P43,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P45,P52) s(P49,P52) s(P48,P53) s(P52,P53) s(P41,P54) s(P51,P54) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10) pen(2) color(red) s(P15,P28) abstand(P15,P28,A0) print(abs(P15,P28):,8.24,16.094) print(A0,9.2,16.094) print(min=0.9999999999999931,8.24,15.872) print(max=1.000000000000011,8.24,15.65) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1149, eingetragen 2018-04-20

nur zu, minimalster 4/6 er hat 117 hölzer...


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1150, vom Themenstarter, eingetragen 2018-04-20

Hier schließt der Rahmen leider nicht bzw. Überschneidung. \geo ebene(344.14,380.75) x(7.96,14.84) y(10,17.62) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #N(22,21,19); N(23,13,21); Q(26,12,14,ab(4,5,[1,3]),D); #A(20,27,ab(20,27,[1,29],"gespiegelt")); #N(55,54,29); N(56,55,14); N(57,43,55); N(58,56,23); #R(23,56); R(57,58); A(23,56); A(57,58); #A(57,51); A(58,51); #Z(21,22); Z(49,50); Z(48,50); Z(19,22); #N(59,49,21); # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(11,11.732050807568877,P6) p(10.293411255652236,10.955986315308214,P7) p(9.318797193098924,10.732094758805236,P8) p(9.61220844875116,11.68808107411345,P9) p(8.637594386197847,11.46418951761047,P10) p(8.931005641850083,12.420175832918684,P11) p(7.9563915792967705,12.196284276415703,P12) p(10.017271455782579,11.91710379560287,P13) p(9.810787340596816,12.895553748424142,P14) p(11.847590892140923,10.988317491417408,P15) p(12.779703500642446,10.626148904882788,P16) p(12.62729439278337,11.614466396300196,P17) p(13.559407001284892,11.252297809765574,P18) p(13.406997893425817,12.240615301182983,P19) p(14.33911050192734,11.878446714648362,P20) p(11.968522102495003,11.980978381330122,P21) p(12.566526491856774,12.782471207439036,P22) p(10.985793558277582,12.166031369364113,P23) p(8.836173278043503,12.671662191921163,P26) p(8.012794575591863,14.195488793719758,P27) p(7.984593077444318,13.195886535067732,P28) p(8.864374776191049,13.67126445057319,P29) p(12.239663018940258,16.11504467455541,P30) p(13.003109999227277,15.469174170281807,P31) p(12.062046244827762,15.130944943047535,P32) p(12.825493225114776,14.485074438773934,P33) p(13.766556979514291,14.823303666008208,P34) p(11.884429470715267,14.146845211539661,P35) p(11.846223592503401,15.195694133289981,P36) p(11.246762382002995,15.99609794206739,P37) p(10.853322955566139,15.076747400801963,P38) p(10.253861745065732,15.877151209579374,P39) p(9.860422318628874,14.957800668313947,P40) p(9.260961108128468,15.75820447709136,P41) p(11.01464806449177,14.640282447049788,P42) p(10.225056425840805,14.026649784805933,P43) p(13.011875589786861,14.16721220896958,P44) p(13.957408153651974,13.841684682221592,P45) p(13.202726763924542,13.185593225182963,P46) p(14.148259327789656,12.860065698434976,P47) p(13.393577938062226,12.203974241396352,P48) p(12.463069767613531,13.331262348302891,P49) p(12.401953837099516,12.333131673973417,P50) p(11.593288361390032,13.824699583813016,P51) p(9.625595215340395,14.827053593583338,P52) p(8.636877841860162,14.976846635405547,P53) p(9.0015119490721,14.04569575189755,P54) p(9.853092149671282,13.521471408750976,P55) p(10.779309443091819,13.144481322185383,P56) p(10.803696722739073,13.211066921569165,P57) p(11.72991401615961,12.834076835003572,P58) p(12.868411282925873,12.417097015354692,P59) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P28,P12) s(P26,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P47,P20) s(P48,P20) s(P6,P21) s(P15,P21) s(P13,P23) s(P21,P23) s(P56,P23) s(P28,P26) s(P29,P26) s(P14,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P31,P34) s(P33,P34) s(P32,P35) s(P33,P35) s(P30,P36) s(P30,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P52,P41) s(P53,P41) s(P35,P42) s(P36,P42) s(P40,P43) s(P42,P43) s(P34,P44) s(P34,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P35,P49) s(P44,P49) s(P42,P51) s(P49,P51) s(P43,P52) s(P53,P52) s(P54,P52) s(P27,P53) s(P27,P54) s(P53,P54) s(P54,P55) s(P29,P55) s(P55,P56) s(P14,P56) s(P43,P57) s(P55,P57) s(P58,P57) s(P51,P57) s(P56,P58) s(P23,P58) s(P51,P58) s(P49,P59) s(P21,P59) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P23,P56) abstand(P23,P56,A0) print(abs(P23,P56):,7.96,17.615) print(A0,9.26,17.615) color(red) s(P57,P58) abstand(P57,P58,A1) print(abs(P57,P58):,7.96,17.315) print(A1,9.26,17.315) print(min=0.9999999999999845,7.96,17.015) print(max=1.0000000000000135,7.96,16.715) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1151, vom Themenstarter, eingetragen 2018-04-20

Knappe Kiste. ;-) \geo ebene(314.99,431.65) x(7.87,14.17) y(10,18.63) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #D=50; P[1]=[0,0]; P[2]=[D,0]; A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #N(22,21,19); N(23,13,21); #Q(26,12,14,ab(4,5,[1,3]),D); # #N(30,14,23); #R(22,23); A(22,23); #R(22,30); A(22,30); #A(20,27,ab(20,27,[1,30],"gespiegelt")); #N(57,55,29); R(57,30); R(57,56); # #//N(55,54,29); N(56,55,14); N(57,43,55); N(58,56,23); #//R(23,56); A(23,56); #//R(21,58); #//A(57,51); A(58,51); #//Z(21,22); Z(49,50); Z(48,50); Z(19,22); #//N(59,49,21); # # #//Ende der Eingabe, weiter mit fedgeo: p(10,10,P1) p(11,10,P2) p(10.5,10.86602540378444,P3) p(11.5,10.86602540378444,P4) p(12,10,P5) p(11,11.732050807568877,P6) p(10.259615975431647,10.965711937018838,P7) p(9.293476917519632,10.7076899984615,P8) p(9.553092892951279,11.673401935480339,P9) p(8.586953835039264,11.415379996923,P10) p(8.84656981047091,12.381091933941839,P11) p(7.880430752558896,12.123069995384501,P12) p(10.021201301404748,11.936875385264624,P13) p(9.709185239725276,12.886952212291805,P14) p(11.55768358579419,10.896859069042687,P15) p(12.555544530302525,10.831486785734414,P16) p(12.113228116096716,11.728345854777102,P17) p(13.11108906060505,11.662973571468829,P18) p(12.668772646399239,12.559832640511516,P19) p(13.666633590907573,12.494460357203243,P20) p(11.99803662844898,11.794683772325387,P21) p(11.686020566757403,12.744760599348592,P22) p(11.01923792985373,11.999508350021134,P23) p(8.743046181813263,12.628930273734468,P26) p(7.866870478180187,14.123024024595868,P27) p(7.873650615369542,13.123047009990184,P28) p(8.736266044623907,13.628907288340152,P29) p(10.707221868174258,12.949585177048313,P30) p(11.834449559344868,16.53297939741055,P31) p(12.688279362399207,16.012427125860242,P32) p(11.810552969711775,15.53326496168207,P33) p(12.664382772766118,15.012712690131762,P34) p(13.542109165453551,15.491874854309932,P35) p(11.786656380078686,14.533550525953594,P36) p(11.553413874039027,15.573282078676835,P37) p(10.86280945872474,16.29651478088852,P38) p(10.5817737734189,15.336817462154805,P39) p(9.891169358104614,16.06005016436649,P40) p(9.610133672798776,15.100352845632775,P41) p(8.91952925748449,15.823585547844463,P42) p(10.844306980838402,14.868181083063188,P43) p(10.083333717888522,14.219397842623504,P44) p(12.697584202973836,14.956358666180535,P45) p(13.583617307271558,14.492736688607703,P46) p(12.739092344791844,13.957220500478307,P47) p(13.625125449089566,13.493598522905474,P48) p(12.780600486609853,12.958082334776076,P49) p(12.606206065910365,13.960542399961305,P50) p(11.845232802952218,13.311759159531322,P51) p(11.663856666670084,14.2951729570709,P52) p(9.392729302574237,14.942630544835191,P53) p(8.393199867832337,14.973304786220162,P54) p(8.86639991292208,14.092349783210887,P55) p(10.902883403720205,13.646389716631223,P56) p(9.735795479365805,13.598233046955174,P57) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P28,P12) s(P26,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P48,P20) s(P49,P20) s(P6,P21) s(P15,P21) s(P21,P22) s(P19,P22) s(P23,P22) s(P30,P22) s(P13,P23) s(P21,P23) s(P28,P26) s(P29,P26) s(P14,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P14,P30) s(P23,P30) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P32,P35) s(P34,P35) s(P33,P36) s(P34,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P53,P42) s(P54,P42) s(P36,P43) s(P37,P43) s(P41,P44) s(P43,P44) s(P35,P45) s(P35,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P36,P50) s(P45,P50) s(P49,P51) s(P50,P51) s(P52,P51) s(P56,P51) s(P43,P52) s(P50,P52) s(P44,P53) s(P54,P53) s(P55,P53) s(P27,P54) s(P27,P55) s(P54,P55) s(P44,P56) s(P52,P56) s(P55,P57) s(P29,P57) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P22,P23) abstand(P22,P23,A0) print(abs(P22,P23):,7.87,18.633) print(A0,9.17,18.633) color(red) s(P22,P30) abstand(P22,P30,A1) print(abs(P22,P30):,7.87,18.333) print(A1,9.17,18.333) color(red) s(P57,P30) abstand(P57,P30,A2) print(abs(P57,P30):,7.87,18.033) print(A2,9.17,18.033) color(red) s(P57,P56) abstand(P57,P56,A3) print(abs(P57,P56):,7.87,17.733) print(A3,9.17,17.733) print(min=0.9999999999889637,7.87,17.433) print(max=1.0000000000019253,7.87,17.133) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1152, vom Themenstarter, eingetragen 2018-04-20

Schade, so knapp 'n neuer 4er. Die roten Kanten sind etwas zu kurz, doch der Graph ist starr. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_fast_slash_neu_a.png


   Profil
StefanVogel
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 26.11.2005
Mitteilungen: 3936
Wohnort: Raun
  Beitrag No.1153, eingetragen 2018-04-21

Graph #1141 geht nicht. Den Kern habe ich komplett neu eingegeben, weil mehrere Randkanten entfallen sind. Dadurch entstehen 4 einzustellende Winkel. Diese reichen aber nicht aus, um 5 Verbindungen zum rechten Teilgraph herzustellen. Ich konnte sogar nur eine Kante einstellen, bei den anderen passiert vorher irgendeine Überschneidung oder dass der Kern nicht mehr gezeichnet werden kann. Wenn du aus deiner Graphik genauere Anfangswinkel bestimmen kannst, geht das eventuell noch zu verbessern, aber alle fünf Verbindungskanten mit vier Winkeln einstellen ist wohl aussichtslos. Der rechte Teilgraph ist eine Kopie des linken, damit sind es dann 8 Winkel und 10 Verbindungskanten. \geo ebene(625.42,506.99) x(4.72,21.45) y(10.98,24.55) form(.) #//Eingabe war: # ##1141 # # # # # # # #P[1]=[-16.81608278869397,220.80405522097433]; #P[2]=[-37.53608278869397,189.70405522097437]; D=ab(1,2); A(2,1,Bew(1)); #M(3,1,2,blauerWinkel); N(4,3,2); L(5,4,2); M(6,1,3,gruenerWinkel); N(7,6,3); #L(8,7,3); N(9,8,4); L(10,8,9); L(11,10,9); L(12,10,11); L(13,12,11); #Q(14,13,5,ab(8,12,[8,12]),ab(12,8,[8,12])); N(21,18,2); N(22,21,1); #L(23,21,22); Q(24,20,23,D,ab(12,8,[8,13])); N(29,25,22); N(30,29,1); #L(31,29,30); Q(32,28,31,ab(8,12,[8,12]),ab(12,8,[8,12])); N(39,36,30); #N(40,39,1); L(41,39,40); Q(42,38,41,D,ab(12,8,[8,13])); N(47,43,40); #N(48,47,1); L(49,47,48); Q(50,46,49,ab(8,12,[8,12]),ab(12,8,[8,12])); #N(57,54,48); N(58,57,1); L(59,57,58); Q(60,56,59,D,ab(12,8,[8,13])); #N(65,61,58); N(66,65,1); L(67,65,66); M(68,1,66,orangerWinkel); N(69,66,68); #N(70,67,69); L(71,67,70); L(72,71,70); L(73,71,72); N(74,64,73); L(75,69,68); #M(76,1,68,vierterWinkel); N(77,68,76); L(78,77,76); N(79,76,6); L(80,79,6); #N(81,75,77); N(82,80,7);N(83,78,79); L(84,80,82); L(85,84,82); L(86,84,85); #N(87,85,12); L(88,78,83); L(89,88,83); L(90,64,74); L(91,90,74); L(92,90,91); #L(93,75,81); L(94,93,81); A(93,94,ab(94,93,[1,94])); R(180,183); R(91,180); #R(183,73); R(72,182); R(92,181); # # # # # # # # # # # # # #//Ende der Eingabe, weiter mit fedgeo: nolabel() p(9.550013017104433,15.908566927774325,P1) p(8.995559854453212,15.07635199734706,P2) p(9.597434967351749,14.909691981329706,P3) p(9.042981804700528,14.077477050902441,P4) p(8.15421975075201,14.535845910513572,P5) p(10.09051910393792,15.06722682407312,P6) p(10.137941054185236,14.068351877628501,P7) p(9.139066107740616,14.02092992738119,P8) p(8.584612945089399,13.18871499695392,P9) p(9.582558797573721,13.124651938102975,P10) p(9.028105634922504,12.292437007675705,P11) p(10.026051487406827,12.22837394882476,P12) p(9.47159832475561,11.396159018397492,P13) p(7.845028437884189,12.55989026018964,P14) p(7.747760500317238,11.564632028210887,P15) p(8.658313369057998,11.978024622154868,P16) p(8.561045443752949,10.982766407314813,P17) p(7.221308027569092,14.175740763719089,P18) p(7.999624073498023,13.547868088609466,P19) p(7.06671237113518,13.187762938557121,P20) p(8.062648131270292,14.71624685055258,P21) p(8.617101293921513,15.548461780979846,P22) p(7.619155441437192,15.612524839830794,P23) p(6.460004423581294,13.982687756621667,P24) p(6.623627527928698,15.70699268317141,P25) p(7.039579915336118,14.797606310439871,P26) p(6.04405201900075,14.892074141566846,P27) p(5.464476510072801,14.077155599962282,P28) p(7.621573380413018,15.642929624320434,P29) p(8.554485103595939,16.003034771114912,P30) p(7.776169036846935,16.6309074494824,P31) p(5.866599097967355,16.036312925014304,P32) p(4.917728444241008,15.72064778202741,P33) p(5.665537783377002,15.056734266725343,P34) p(4.716667150293731,14.7410691195014,P35) p(7.04130957055679,17.309126857051783,P36) p(6.821384061142073,16.33361020736894,P37) p(6.086524601117,17.011829594817733,P38) p(7.819625637305792,16.681254178684295,P39) p(8.815153550814287,16.586786335343707,P40) p(8.399201146233718,17.496172720288875,P41) p(6.449865147825262,17.9434859945262,P42) p(8.105559476101362,18.45208828641482,P43) p(7.4245331517427005,17.71982937794713,P44) p(7.130891476897135,18.67574492353348,P45) p(6.156223477692908,18.899401560652144,P46) p(8.521511880681931,17.54270190146965,P47) p(9.256371346972077,16.86448249390027,P48) p(9.47629685012172,17.8399991637037,P49) p(8.11468022418716,19.304922425850414,P50) p(7.449470352050421,20.051578856889368,P51) p(7.135451846667177,19.102162013886975,P52) p(6.470241978803296,19.848818424290233,P53) p(9.770223073444994,18.795827273377668,P54) p(8.795488552589914,18.57246080912402,P55) p(9.089414760477714,19.528288904451028,P56) p(9.550297570295381,17.82031060357423,P57) p(9.843939240427735,16.86439503744829,P58) p(10.524965569499606,17.59665396645557,P59) p(10.089208352679515,19.548605719954924,P60) p(11.261246168040595,18.273330314654707,P61) p(10.307086981656715,18.572629847796698,P62) p(11.04336755963055,19.249306191404386,P63) p(10.825488951220503,20.225282068154065,P64) p(10.580219838968738,17.541071385647413,P65) p(10.286293615645436,16.58524327597345,P66) p(11.261028151935996,16.808609754574036,P67) p(10.541264382932711,16.040554539858086,P68) p(11.277544981473714,16.717230888057212,P69) p(12.252279517764274,16.940597366657798,P70) p(11.642349209800752,17.733052424959226,P71) p(12.63360057562903,17.865040037042988,P72,label) p(12.023670267665509,18.65749509534442,P73,label) p(11.554167320798042,19.540426000275698,P74) p(11.495423589883739,15.74125501130753,P75) p(10.474455687489625,15.527245869909569,P76) p(11.465707053317903,15.65923348199333,P77) p(11.084385995453147,14.73479081160814,P78) p(11.014961774323112,14.685905766208366,P79) p(10.22250671602168,14.075975458244844,P80) p(12.41986626026893,15.35993395344277,P81) p(10.269928666268994,13.077100511800225,P82) p(11.624892082286639,13.89345070790694,P83) p(11.111268769970199,13.61760659863371,P84) p(11.158690720217512,12.61873165218909,P85) p(12.000030823918717,13.159237739022576,P86) p(10.853281460629105,11.66651046771688,P87) p(12.083260941897766,14.782212761855462,P88) p(12.623767028731258,13.94087265815426,P89) p(11.782930888727858,20.513908013457257,P90) p(12.511609258305397,19.82905194557889,P91,label) p(12.740372826235214,20.80253395876045,P92,label) p(12.287878648185172,16.35118531927105,P93) p(13.212321318570362,15.969864261406292,P94) p(15.9501869496511,16.412482652903016,P95) p(16.504640112302322,17.244697583330286,P96) p(15.902764999403784,17.411357599347635,P97) p(16.457218162055007,18.2435725297749,P98) p(17.345980216003525,17.785203670163767,P99) p(15.409680862817615,17.253822756604222,P100) p(15.3622589125703,18.252697703048838,P101) p(16.36113385901492,18.30011965329615,P102) p(16.915587021666134,19.132334583723424,P103) p(15.917641169181813,19.196397642574368,P104) p(16.47209433183303,20.028612573001638,P105) p(15.474148479348708,20.092675631852586,P106) p(16.028601641999924,20.92489056227985,P107) p(17.655171528871346,19.761159320487707,P108) p(17.752439466438297,20.756417552466452,P109) p(16.84188659769754,20.343024958522477,P110) p(16.939154523002586,21.338283173362527,P111) p(18.278891939186444,18.145308816958256,P112) p(17.500575893257512,18.773181492067877,P113) p(18.433487595620356,19.13328664212022,P114) p(17.43755183548524,17.604802730124764,P115) p(16.883098672834024,16.772587799697497,P116) p(17.881044525318345,16.70852474084655,P117) p(19.040195543174242,18.338361824055674,P118) p(18.876572438826834,16.614056897505932,P119) p(18.46062005141942,17.523443270237472,P120) p(19.456147947754786,17.4289754391105,P121) p(20.03572345668273,18.243893980715065,P122) p(17.878626586342516,16.67811995635691,P123) p(16.945714863159598,16.31801480956243,P124) p(17.7240309299086,15.690142131194943,P125) p(19.63360086878818,16.284736655663036,P126) p(20.582471522514524,16.600401798649933,P127) p(19.834662183378533,17.264315313951997,P128) p(20.7835328164618,17.579980461175946,P129) p(18.458890396198747,15.011922723625561,P130) p(18.67881590561346,15.987439373308405,P131) p(19.413675365638532,15.309219985859604,P132) p(17.680574329449744,15.639795401993048,P133) p(16.685046415941247,15.734263245333636,P134) p(17.100998820521816,14.824876860388468,P135) p(19.050334818930267,14.377563586151139,P136) p(17.39464049065417,13.868961294262519,P137) p(18.075666815012838,14.601220202730218,P138) p(18.3693084898584,13.645304657143864,P139) p(19.343976489062747,13.421648020025494,P140) p(16.978688086073603,14.778347679207698,P141) p(16.243828619783457,15.456567086777081,P142) p(16.02390311663381,14.481050416973634,P143) p(17.385519742568377,13.016127154826926,P144) p(18.05072961470512,12.269470723787979,P145) p(18.364748120088354,13.218887566790364,P146) p(19.029957987952244,12.472231156387117,P147) p(15.729976893310539,13.525222307299673,P148) p(16.704711414165622,13.748588771553322,P149) p(16.410785206277822,12.792760676226312,P150) p(15.949902396460157,14.500738977103115,P151) p(15.6562607263278,15.456654543229057,P152) p(14.975234397255928,14.724395614221777,P153) p(15.41099161407602,12.772443860722415,P154) p(14.238953798714942,14.047719266022634,P155) p(15.193112985098821,13.748419732880645,P156) p(14.456832407124985,13.071743389272955,P157) p(14.674711015535035,12.095767512523278,P158) p(14.919980127786795,14.779978195029926,P159) p(15.213906351110099,15.735806304703889,P160) p(14.239171814819542,15.512439826103316,P161) p(14.958935583822822,16.280495040819254,P162) p(14.222654985281817,15.603818692620127,P163) p(13.24792044899126,15.380452214019545,P164) p(13.857850756954782,14.587997155718114,P165) p(12.866599391126504,14.456009543634352,P166) p(13.476529699090028,13.663554485332924,P167) p(13.94603264595749,12.780623580401643,P168) p(14.004776376871796,16.57979456936981,P169) p(15.02574427926591,16.793803710767776,P170) p(14.034492913437632,16.66181609868401,P171) p(14.415813971302388,17.586258769069204,P172) p(14.485238192432423,17.635143814468975,P173) p(15.277693250733854,18.2450741224325,P174) p(13.080333706486604,16.96111562723457,P175) p(15.23027130048654,19.24394906887712,P176) p(13.875307884468896,18.427598872770403,P177) p(14.388931196785336,18.70344298204363,P178) p(14.34150924653802,19.702317928488256,P179) p(13.500169142836818,19.161811841654767,P180,label) p(14.646918506126427,20.654539112960464,P181,label) p(13.416939024857768,17.53883681882188,P182,label) p(12.876432938024276,18.38017692252308,P183,label) p(13.717269078027677,11.807141567220084,P184) p(12.988590708450136,12.491997635098453,P185) p(12.75982714052032,11.518515621916894,P186) nolabel() s(P1,P2) s(P1,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P1,P6) s(P6,P7) s(P3,P7) s(P7,P8) s(P3,P8) s(P8,P9) s(P4,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P12,P13) s(P11,P13) s(P16,P13) s(P17,P13) s(P19,P14) s(P20,P14) s(P14,P15) s(P14,P16) s(P15,P16) s(P15,P17) s(P16,P17) s(P5,P18) s(P5,P19) s(P18,P19) s(P18,P20) s(P19,P20) s(P18,P21) s(P2,P21) s(P21,P22) s(P1,P22) s(P21,P23) s(P22,P23) s(P20,P24) s(P26,P24) s(P27,P24) s(P23,P25) s(P23,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P27,P28) s(P24,P28) s(P34,P28) s(P35,P28) s(P25,P29) s(P22,P29) s(P29,P30) s(P1,P30) s(P29,P31) s(P30,P31) s(P37,P32) s(P38,P32) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P31,P36) s(P31,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P36,P39) s(P30,P39) s(P39,P40) s(P1,P40) s(P39,P41) s(P40,P41) s(P38,P42) s(P44,P42) s(P45,P42) s(P41,P43) s(P41,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P45,P46) s(P42,P46) s(P52,P46) s(P53,P46) s(P43,P47) s(P40,P47) s(P47,P48) s(P1,P48) s(P47,P49) s(P48,P49) s(P55,P50) s(P56,P50) s(P50,P51) s(P50,P52) s(P51,P52) s(P51,P53) s(P52,P53) s(P49,P54) s(P49,P55) s(P54,P55) s(P54,P56) s(P55,P56) s(P54,P57) s(P48,P57) s(P57,P58) s(P1,P58) s(P57,P59) s(P58,P59) s(P56,P60) s(P62,P60) s(P63,P60) s(P59,P61) s(P59,P62) s(P61,P62) s(P61,P63) s(P62,P63) s(P63,P64) s(P60,P64) s(P61,P65) s(P58,P65) s(P65,P66) s(P1,P66) s(P65,P67) s(P66,P67) s(P1,P68) s(P66,P69) s(P68,P69) s(P67,P70) s(P69,P70) s(P67,P71) s(P70,P71) s(P71,P72) s(P70,P72) s(P71,P73) s(P72,P73) s(P64,P74) s(P73,P74) s(P69,P75) s(P68,P75) s(P1,P76) s(P68,P77) s(P76,P77) s(P77,P78) s(P76,P78) s(P76,P79) s(P6,P79) s(P79,P80) s(P6,P80) s(P75,P81) s(P77,P81) s(P80,P82) s(P7,P82) s(P78,P83) s(P79,P83) s(P80,P84) s(P82,P84) s(P84,P85) s(P82,P85) s(P84,P86) s(P85,P86) s(P85,P87) s(P12,P87) s(P78,P88) s(P83,P88) s(P88,P89) s(P83,P89) s(P64,P90) s(P74,P90) s(P90,P91) s(P74,P91) s(P90,P92) s(P91,P92) s(P75,P93) s(P81,P93) s(P175,P93) s(P93,P94) s(P81,P94) s(P169,P94) s(P175,P94) s(P95,P96) s(P95,P97) s(P96,P98) s(P97,P98) s(P96,P99) s(P98,P99) s(P95,P100) s(P97,P101) s(P100,P101) s(P97,P102) s(P101,P102) s(P98,P103) s(P102,P103) s(P102,P104) s(P103,P104) s(P103,P105) s(P104,P105) s(P104,P106) s(P105,P106) s(P105,P107) s(P106,P107) s(P110,P107) s(P111,P107) s(P113,P108) s(P114,P108) s(P108,P109) s(P108,P110) s(P109,P110) s(P109,P111) s(P110,P111) s(P99,P112) s(P99,P113) s(P112,P113) s(P112,P114) s(P113,P114) s(P96,P115) s(P112,P115) s(P95,P116) s(P115,P116) s(P115,P117) s(P116,P117) s(P114,P118) s(P120,P118) s(P121,P118) s(P117,P119) s(P117,P120) s(P119,P120) s(P119,P121) s(P120,P121) s(P118,P122) s(P121,P122) s(P128,P122) s(P129,P122) s(P116,P123) s(P119,P123) s(P95,P124) s(P123,P124) s(P123,P125) s(P124,P125) s(P131,P126) s(P132,P126) s(P126,P127) s(P126,P128) s(P127,P128) s(P127,P129) s(P128,P129) s(P125,P130) s(P125,P131) s(P130,P131) s(P130,P132) s(P131,P132) s(P124,P133) s(P130,P133) s(P95,P134) s(P133,P134) s(P133,P135) s(P134,P135) s(P132,P136) s(P138,P136) s(P139,P136) s(P135,P137) s(P135,P138) s(P137,P138) s(P137,P139) s(P138,P139) s(P136,P140) s(P139,P140) s(P146,P140) s(P147,P140) s(P134,P141) s(P137,P141) s(P95,P142) s(P141,P142) s(P141,P143) s(P142,P143) s(P149,P144) s(P150,P144) s(P144,P145) s(P144,P146) s(P145,P146) s(P145,P147) s(P146,P147) s(P143,P148) s(P143,P149) s(P148,P149) s(P148,P150) s(P149,P150) s(P142,P151) s(P148,P151) s(P95,P152) s(P151,P152) s(P151,P153) s(P152,P153) s(P150,P154) s(P156,P154) s(P157,P154) s(P153,P155) s(P153,P156) s(P155,P156) s(P155,P157) s(P156,P157) s(P154,P158) s(P157,P158) s(P152,P159) s(P155,P159) s(P95,P160) s(P159,P160) s(P159,P161) s(P160,P161) s(P95,P162) s(P160,P163) s(P162,P163) s(P161,P164) s(P163,P164) s(P161,P165) s(P164,P165) s(P164,P166) s(P165,P166) s(P165,P167) s(P166,P167) s(P158,P168) s(P167,P168) s(P162,P169) s(P163,P169) s(P95,P170) s(P162,P171) s(P170,P171) s(P170,P172) s(P171,P172) s(P100,P173) s(P170,P173) s(P100,P174) s(P173,P174) s(P169,P175) s(P171,P175) s(P101,P176) s(P174,P176) s(P172,P177) s(P173,P177) s(P174,P178) s(P176,P178) s(P176,P179) s(P178,P179) s(P178,P180) s(P179,P180) s(P106,P181) s(P179,P181) s(P172,P182) s(P177,P182) s(P177,P183) s(P182,P183) s(P158,P184) s(P168,P184) s(P168,P185) s(P184,P185) s(P184,P186) s(P185,P186) pen(2) color(#0000FF) m(P2,P1,MA10) m(P1,P3,MB10) b(P1,MA10,MB10) color(#008000) m(P3,P1,MA11) m(P1,P6,MB11) f(P1,MA11,MB11) color(#FFA500) m(P66,P1,MA12) m(P1,P68,MB12) b(P1,MA12,MB12) color(#EE82EE) m(P68,P1,MA13) m(P1,P76,MB13) b(P1,MA13,MB13) pen(2) color(red) s(P180,P183) abstand(P180,P183,A0) print(abs(P180,P183):,4.72,24.549) print(A0,6.46,24.549) color(red) s(P91,P180) abstand(P91,P180,A1) print(abs(P91,P180):,4.72,24.148) print(A1,6.46,24.148) color(red) s(P183,P73) abstand(P183,P73,A2) print(abs(P183,P73):,4.72,23.747) print(A2,6.46,23.747) color(red) s(P72,P182) abstand(P72,P182,A3) print(abs(P72,P182):,4.72,23.345) print(A3,6.46,23.345) color(red) s(P92,P181) abstand(P92,P181,A4) print(abs(P92,P181):,4.72,22.944) print(A4,6.46,22.944) print(min=0.9999999817498686,4.72,22.542) print(max=1.0000000000003102,4.72,22.141) color(blue) color(orange) color(red) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1154, vom Themenstarter, eingetragen 2018-04-21

Danke Stefan. Das war bestimmt viel Arbeit. Wenn du magst, kannst du mal diesen hier versuchen. Er ist aus diesem Beitrag entstanden. Doppelt spiegelsymmetrisch. Die vier Kanten im roten Kreis müssen kontrolliert werden. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_4_4_schmal_versuch_slash.png


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1155, vom Themenstarter, eingetragen 2018-04-22

Ein paar Versuche. \geo ebene(561.28,530.97) x(7.51,14.87) y(8.48,15.45) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-189.94515907342895,126.52105737164764]; #P[2]=[-158.66288999063147,57.068402519356546]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #Q(22,12,14,ab(4,5,[1,3]),D); #A(20,23,ab(20,23,[1,25],"gespiegelt")); # #N(50,13,21); N(51,45,38); N(52,48,25); #N(49,19,44); //N(53,52,50); #R(14,50); R(55,49); A(14,50); #//A(21,49); A(45,49); #N(54,45,51); A(49,55); A(49,54); #A(51,39); N(55,50,21); N(56,55,54); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.50638185059832,11.660980498173515,P1) p(7.917058460204229,10.749199426686179,P2) p(8.501345725999103,11.56074633908863,P3) p(8.912022335605013,10.648965267601293,P4) p(8.327735069810139,9.837418355198842,P5) p(9.496309601399886,11.460512180003741,P6) p(8.506153426563024,11.639607714240352,P7) p(8.024777012416386,12.516121688973971,P8) p(9.02454858838109,12.494748905040808,P9) p(8.543172174234455,13.371262879774426,P10) p(9.542943750199157,13.349890095841262,P11) p(9.061567336052521,14.22640407057488,P12) p(9.155052525976057,12.400482184032155,P13) p(10.143737895015798,12.550486320797612,P14) p(9.16516060487644,10.383969792136774,P15) p(9.219775266206426,9.385462286522614,P16) p(10.057200801272728,9.932013723460546,P17) p(10.111815462602715,8.933506217846386,P18) p(10.949240997669017,9.480057654784318,P19) p(11.003855658999003,8.481550149170157,P20) p(10.120559679038447,10.679287602453693,P21) p(9.662361480869166,13.427000295531231,P22) p(11.046969435007126,14.467606279243554,P23) p(10.054268385529824,14.347005174909217,P24) p(10.655062530346468,13.547601399865568,P25) p(14.546763105482077,11.610273085172508,P26) p(14.122995817222774,10.704501985279517,P27) p(13.550458678831326,11.52438077215141,P28) p(13.126691390572022,10.618609672258422,P29) p(13.699228528963472,9.798730885386528,P30) p(12.554154252180572,11.438488459130316,P31) p(13.546787395314784,11.603303216062345,P32) p(14.040739166687978,12.472792518789689,P33) p(13.040763456520681,12.465822649679527,P34) p(13.534715227893876,13.33531195240687,P35) p(12.53473951772658,13.328342083296707,P36) p(13.028691289099775,14.197831386024053,P37) p(12.90891524107505,12.373445485286393,P38) p(11.92249309878776,12.537675072162065,P39) p(12.869762390989774,10.357287888703999,P40) p(12.800770905641983,9.35967063998107,P41) p(11.971304767668283,9.918227643298543,P42) p(11.902313282320492,8.920610394575615,P43) p(11.072847144346795,9.479167397893086,P44) p(11.918716186742603,10.666336618497624,P45) p(12.416444870160952,13.407164374889412,P46) p(12.037830362053453,14.332718832633802,P47) p(11.425583943114624,13.542051821499161,P48) p(11.018232483016806,10.477674903507246,P49) p(9.779302603614617,11.619257606482106,P50) p(12.273477175637083,11.6012936446537,P51) p(11.033677038453966,12.622046942121175,P52) p(11.286400145091932,11.44104716022997,P54) p(10.763969043610498,11.444809901006119,P55) p(11.032136705685598,12.408182157725802,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P50,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20) s(P6,P21) s(P15,P21) s(P24,P22) s(P25,P22) s(P14,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P31,P45) s(P40,P45) s(P39,P46) s(P47,P46) s(P48,P46) s(P23,P47) s(P23,P48) s(P47,P48) s(P19,P49) s(P44,P49) s(P55,P49) s(P54,P49) s(P13,P50) s(P21,P50) s(P45,P51) s(P38,P51) s(P39,P51) s(P48,P52) s(P25,P52) s(P45,P54) s(P51,P54) s(P50,P55) s(P21,P55) s(P55,P56) s(P54,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P14,P50) abstand(P14,P50,A0) print(abs(P14,P50):,7.51,15.452) print(A0,8.36,15.452) color(red) s(P55,P49) abstand(P55,P49,A1) print(abs(P55,P49):,7.51,15.255) print(A1,8.36,15.255) print(min=0.9999999999921865,7.51,15.058) print(max=1.000000000002937,7.51,14.861) \geooff \geoprint() \geo ebene(488.88,515.79) x(8.62,15.03) y(9.15,15.93) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-105.3866088864857,175.8765082773407]; #P[2]=[-93.1459270831925,100.69394823852227]; D=ab(1,2); #A(2,1); L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #N(22,21,19); N(23,13,21); #Q(26,12,14,ab(4,5,[2,2]),D); # #R(22,23); A(22,23); #N(28,14,23); #A(20,27,ab(20,27,[1,27],"gespiegelt")); #R(26,51); A(26,51); R(28,42); R(28,50); # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.616474555576083,12.308923561059169,P1) p(8.777171392782359,11.32191974824389,P2) p(9.551593349709353,11.954589197979976,P3) p(9.712290186915629,10.967585385164696,P4) p(8.937868229988634,10.33491593542861,P5) p(10.486712143842624,11.600254834900781,P6) p(9.593305644042823,12.094911821650129,P7) p(9.290229702845778,13.04787822917325,P8) p(10.267060791312518,12.833866489764208,P9) p(9.963984850115473,13.786832897287331,P10) p(10.940815938582212,13.57282115787829,P11) p(10.637739997385166,14.525787565401412,P12) p(10.456491521175277,12.59979808757452,P13) p(11.450148530824835,12.71225139866094,P14) p(9.738299288663264,10.934340759997138,P15) p(9.857200885061324,9.94143471692257,P16) p(10.657631943735954,10.540859541491098,P17) p(10.776533540134015,9.547953498416533,P18) p(11.576964598808646,10.14737832298506,P19) p(11.695866195206705,9.154472279910493,P20) p(10.687837478308273,10.620689319054046,P21) p(11.538357015973268,11.14663277233598,P22) p(10.657616855640928,11.620232571727785,P23) p(11.147072589627792,13.665217806184062,P26) p(11.637681566717362,14.53659764965023,P27) p(11.651273865290486,11.732685882814204,P28) p(14.706342348920991,12.37475939184401,P29) p(14.567021011003312,11.384512167762658,P30) p(13.779102427880677,12.000291597729282,P31) p(13.639781089962998,11.010044373647927,P32) p(14.427699673085632,10.394264943681303,P33) p(12.851862506840362,11.625823803614551,P34) p(13.734366260868375,12.13967965164096,P35) p(14.016769277963796,13.09897550586707,P36) p(13.044793189911182,12.863895765664019,P37) p(13.327196207006594,13.82319161989013,P38) p(12.355220118953982,13.588111879687077,P39) p(12.637623136049406,14.54740773391319,P40) p(12.860467035615669,12.625786783971602,P41) p(11.864611141876734,12.716732036213969,P42) p(13.614496779355443,10.97624522997015,P43) p(13.517088513792656,9.981000722424367,P44) p(12.703885620062469,10.562981008713214,P45) p(12.606477354499681,9.567736501167431,P46) p(11.793274460769494,10.149716787456278,P47) p(12.671961312606395,10.642139118203016,P48) p(11.810270233159029,11.149572348885469,P49) p(12.6805658413817,11.642102098560066,P50) p(12.147014158972148,13.676027890440082,P51) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P27,P12) s(P26,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P46,P20) s(P47,P20) s(P6,P21) s(P15,P21) s(P21,P22) s(P19,P22) s(P23,P22) s(P13,P23) s(P21,P23) s(P27,P26) s(P14,P26) s(P51,P26) s(P14,P28) s(P23,P28) s(P29,P30) s(P29,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P30,P33) s(P32,P33) s(P31,P34) s(P32,P34) s(P29,P35) s(P29,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P36,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P51,P40) s(P27,P40) s(P34,P41) s(P35,P41) s(P39,P42) s(P41,P42) s(P33,P43) s(P33,P44) s(P43,P44) s(P43,P45) s(P44,P45) s(P44,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P34,P48) s(P43,P48) s(P47,P49) s(P48,P49) s(P50,P49) s(P41,P50) s(P48,P50) s(P42,P51) s(P27,P51) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P22,P23) abstand(P22,P23,A0) print(abs(P22,P23):,8.62,15.926) print(A0,9.47,15.926) color(red) s(P26,P51) abstand(P26,P51,A1) print(abs(P26,P51):,8.62,15.729) print(A1,9.47,15.729) color(red) s(P28,P42) abstand(P28,P42,A2) print(abs(P28,P42):,8.62,15.532) print(A2,9.47,15.532) color(red) s(P28,P50) abstand(P28,P50,A3) print(abs(P28,P50):,8.62,15.335) print(A3,9.47,15.335) print(min=0.9999999999999944,8.62,15.138) print(max=1.0000000000122387,8.62,14.941) \geooff \geoprint() \geo ebene(583.69,459.64) x(7.92,15.59) y(9.09,15.12) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-158.1449878948643,136.994529176407]; #P[2]=[-136.83309705009083,63.86413239353381]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #N(22,21,19); N(23,13,21); #Q(26,12,14,ab(4,5,[1,3]),D); # #R(22,23); A(22,23); #N(30,29,14); N(31,23,30); N(32,30,31); #R(31,22); A(31,22); # #A(20,27,ab(27,20,[1,32])); # # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.923857528271653,11.798477234110328,P1) p(8.203642062227848,10.838414416082822,P2) p(8.895188584890446,11.56074633908863,P3) p(9.174973118846642,10.600683521061125,P4) p(8.483426596184044,9.878351598055318,P5) p(9.86651964150924,11.323015444066932,P6) p(8.912018309920873,11.645055366013233,P7) p(8.550805154364411,12.577538639993492,P8) p(9.538965936013632,12.424116771896397,P9) p(9.177752780457173,13.356600045876657,P10) p(10.165913562106391,13.203178177779563,P11) p(9.804700406549932,14.135661451759823,P12) p(9.665441977841645,12.302590746518959,P13) p(10.664865251207631,12.336548376801648,P14) p(9.19380995556391,10.582166547254449,P15) p(9.448139901443678,9.615049037006187,P16) p(10.158523260823545,10.318863986205319,P17) p(10.412853206703312,9.351746475957057,P18) p(11.123236566083179,10.055561425156188,P19) p(11.377566511962947,9.088443914907927,P20) p(10.17116246060639,10.370548776528093,P21) p(10.918960725617989,11.03447479262148,P22) p(9.970084796938794,11.35012407898012,P23) p(10.30365209565117,13.269031650781908,P26) p(11.804698942298222,14.133241326827566,P27) p(10.804699674424077,14.134451389293693,P28) p(11.303651363525317,13.26782158831578,P29) p(11.664864519081778,12.33533831433552,P30) p(10.717883061939483,12.014050095085798,P31) p(11.469617550317555,11.354584205912627,P32) p(15.258407925989516,11.423208007625165,P33) p(14.978623392033322,12.38327082565267,P34) p(14.287076869370722,11.660938902646862,P35) p(14.007292335414528,12.621001720674368,P36) p(14.698838858077128,13.343333643680175,P37) p(13.31574581275193,11.89866979766856,P38) p(14.270247144340296,11.57662987572226,P39) p(14.631460299896755,10.644146601742001,P40) p(13.643299518247538,10.797568469839096,P41) p(14.004512673803998,9.865085195858835,P42) p(13.016351892154777,10.01850706395593,P43) p(13.377565047711238,9.086023789975672,P44) p(13.516823476419525,10.919094495216534,P45) p(12.517400203053537,10.885136864933845,P46) p(13.988455498697261,12.639518694481044,P47) p(13.734125552817494,13.606636204729304,P48) p(13.023742193437627,12.902821255530174,P49) p(12.769412247557861,13.869938765778434,P50) p(12.059028888178004,13.166123816579303,P51) p(13.011102993654783,12.8511364652074,P52) p(12.263304728643181,12.18721044911401,P53) p(13.212180657322376,11.871561162755373,P54) p(12.878613358609998,9.952653590953584,P55) p(12.377565779837091,9.0872338524418,P56) p(11.878614090735852,9.953863653419713,P57) p(11.517400935179364,10.886346927399975,P58) p(12.464382392321687,11.207635146649695,P59) p(11.712647903943628,11.867101035822865,P60) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P28,P12) s(P26,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P6,P21) s(P15,P21) s(P21,P22) s(P19,P22) s(P23,P22) s(P13,P23) s(P21,P23) s(P28,P26) s(P29,P26) s(P14,P26) s(P50,P27) s(P51,P27) s(P27,P28) s(P27,P29) s(P28,P29) s(P29,P30) s(P14,P30) s(P23,P31) s(P30,P31) s(P22,P31) s(P30,P32) s(P31,P32) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P34,P37) s(P36,P37) s(P35,P38) s(P36,P38) s(P33,P39) s(P33,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P55,P44) s(P56,P44) s(P38,P45) s(P39,P45) s(P43,P46) s(P45,P46) s(P37,P47) s(P37,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P48,P50) s(P49,P50) s(P49,P51) s(P50,P51) s(P38,P52) s(P47,P52) s(P51,P53) s(P52,P53) s(P54,P53) s(P45,P54) s(P52,P54) s(P46,P55) s(P56,P55) s(P57,P55) s(P20,P56) s(P20,P57) s(P56,P57) s(P46,P58) s(P57,P58) s(P53,P59) s(P54,P59) s(P58,P59) s(P58,P60) s(P59,P60) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P22,P23) abstand(P22,P23,A0) print(abs(P22,P23):,7.92,15.12) print(A0,8.78,15.12) color(red) s(P31,P22) abstand(P31,P22,A1) print(abs(P31,P22):,7.92,14.923) print(A1,8.78,14.923) print(min=0.9999999999999875,7.92,14.726) print(max=1.0000000000142322,7.92,14.53) \geooff \geoprint() \geo ebene(520.96,603.1) x(7.51,14.35) y(8.09,16) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-189.44170340629728,110.47707819891744]; #P[2]=[-161.83717669138161,39.48241833040674]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); # #Q(22,12,14,ab(4,5,[1,3]),D); # #A(20,23,ab(20,23,[1,25],"gespiegelt")); # #N(49,19,44); N(50,13,21); N(51,45,38); N(52,14,50); N(53,51,39); N(54,48,25); #R(52,54); A(52,54); A(53,54); #N(55,52,50); N(56,51,53); R(55,56); #R(21,49); A(21,49); A(45,49); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.512991264573926,11.450353610660809,P1) p(7.875386121898755,10.518328950373046,P2) p(8.501345725999103,11.298184433161067,P3) p(8.863740583323931,10.366159772873306,P4) p(8.237780979223583,9.586304290085286,P5) p(9.48970018742428,11.146015255661325,P6) p(8.510324815493552,11.52333160878387,P7) p(7.948457239741835,12.350558800865276,P8) p(8.94579079066146,12.423536798988337,P9) p(8.383923214909744,13.250763991069745,P10) p(9.38125676582937,13.323741989192804,P11) p(8.819389190077654,14.150969181274212,P12) p(9.306038364954185,12.129004744398088,P13) p(10.143149068972512,12.676038261851948,P14) p(9.103684976230106,10.08651451385938,P15) p(9.103927738747908,9.0865145433262,P16) p(9.96983173575443,9.586724767100293,P17) p(9.970074498272233,8.586724796567113,P18) p(10.835978495278756,9.086935020341206,P19) p(10.836221257796558,8.086935049808027,P20) p(10.072694253807706,10.333538844581152,P21) p(9.581281493220796,13.503265453933356,P22) p(10.703137257226897,14.822901632872947,P23) p(9.761263223652275,14.486935407073581,P24) p(10.523155526795417,13.839231679732723,P25) p(14.024006062310749,11.578993188420828,P26) p(13.698708084394564,10.633381626751005,P27) p(13.042433438834315,11.387903720261042,P28) p(12.71713546091813,10.442292158591219,P29) p(13.373410106478381,9.687770065081182,P30) p(12.06086081535788,11.196814252101255,P31) p(13.024568261584093,11.612520527692928,P32) p(13.55332268947836,12.46129538298861,P33) p(12.553884888751702,12.494822722260711,P34) p(13.08263931664597,13.343597577556393,P35) p(12.083201515919317,13.37712491682849,P36) p(12.611955943813578,14.225899772124176,P37) p(12.205552178834203,12.186291088280537,P38) p(11.347487455515136,12.699832645114428,P39) p(12.488424034866675,10.153387561588007,P40) p(12.527680490251106,9.154158393323463,P41) p(11.642694418639401,9.619775889830288,P42) p(11.681950874023832,8.620546721565745,P43) p(10.79696480241213,9.08616421807257,P44) p(11.510413742223134,10.361944190548327,P45) p(11.876241883409401,13.54860750041011,P46) p(11.657546600520238,14.52440070249856,P47) p(10.921832540116053,13.847108430784498,P48) p(10.836221257796558,8.086935049808027,P49) p(9.88903243133761,11.316528333317915,P50) p(11.655105105699455,11.35142102672761,P51) p(10.726143135355937,11.863561850771774,P52) p(10.79704038238039,11.8649625835615,P53) p(10.741850809684578,12.863438477644273,P54) p(10.781332706183374,10.865085956585098,P55) p(10.781332709922763,10.865085956658978,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20) s(P6,P21) s(P15,P21) s(P49,P21) s(P24,P22) s(P25,P22) s(P14,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P31,P45) s(P40,P45) s(P49,P45) s(P39,P46) s(P47,P46) s(P48,P46) s(P23,P47) s(P23,P48) s(P47,P48) s(P19,P49) s(P44,P49) s(P13,P50) s(P21,P50) s(P45,P51) s(P38,P51) s(P14,P52) s(P50,P52) s(P54,P52) s(P51,P53) s(P39,P53) s(P54,P53) s(P48,P54) s(P25,P54) s(P52,P55) s(P50,P55) s(P51,P56) s(P53,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P52,P54) abstand(P52,P54,A0) print(abs(P52,P54):,7.51,16.004) print(A0,8.37,16.004) color(red) s(P55,P56) abstand(P55,P56,A1) print(abs(P55,P56):,7.51,15.808) print(A1,8.37,15.808) color(red) s(P21,P49) abstand(P21,P49,A2) print(abs(P21,P49):,7.51,15.611) print(A2,8.37,15.611) print(min=0.9999999999993704,7.51,15.414) print(max=2.372804689920601,7.51,15.217) \geooff \geoprint() \geo ebene(557.67,547.09) x(7.51,14.83) y(8.41,15.6) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-189.44170340629728,110.47707819891744]; #P[2]=[-161.83717669138161,39.48241833040674]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); # #Q(22,12,14,ab(4,5,[1,3]),D); # #A(20,23,ab(20,23,[1,25],"gespiegelt")); # #N(49,19,44); N(50,13,21); N(51,45,38); N(52,14,50); N(53,51,39); N(54,48,25); #R(52,54); A(52,54); A(53,54); #N(55,52,50); N(56,51,53); R(55,56); #R(21,49); A(21,49); A(45,49); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.512991264573926,11.450353610660809,P1) p(7.875386121898755,10.518328950373046,P2) p(8.501345725999103,11.298184433161067,P3) p(8.863740583323931,10.366159772873306,P4) p(8.237780979223583,9.586304290085286,P5) p(9.48970018742428,11.146015255661325,P6) p(8.512834368220624,11.432640110438092,P7) p(8.028253157580087,12.307386388106167,P8) p(9.028096261226784,12.289672887883452,P9) p(8.54351505058625,13.164419165551527,P10) p(9.543358154232946,13.14670566532881,P11) p(9.058776943592411,14.021451942996887,P12) p(9.243606721871535,12.115261357645872,P13) p(10.203514478064692,12.395577428537678,P14) p(9.036656328771691,10.187800903445986,P15) p(9.158130001458309,9.195206249599803,P16) p(9.957005351006416,9.796702862960501,P17) p(10.078479023693035,8.804108209114318,P18) p(10.87735437324114,9.405604822475016,P19) p(10.998828045927759,8.413010168628833,P20) p(10.02983135158556,10.30443440660297,P21) p(9.718933267424156,13.270323706205753,P22) p(11.019925536546026,14.413748000020226,P23) p(10.039351240069218,14.217599971508555,P24) p(10.699507563900962,13.466471734717423,P25) p(14.505935869641103,11.425767703503247,P26) p(14.13699639771924,10.496314280217272,P27) p(13.516535857480108,11.28055194700341,P28) p(13.147596385558241,10.351098523717436,P29) p(13.768056925797376,9.5668608569313,P30) p(12.52713584531911,11.135336190503573,P31) p(13.505992930457065,11.415085083226069,P32) p(13.996712979510065,12.286402381032913,P33) p(12.996770040326025,12.275719760755734,P34) p(13.487490089379026,13.14703705856258,P35) p(12.487547150194988,13.136354438285402,P36) p(12.978267199247988,14.007671736092245,P37) p(12.780038524879743,12.102827913812384,P38) p(11.822125554301744,12.389886689672718,P39) p(12.973430776404406,10.173959928501091,P40) p(12.844980632507504,9.182243960830478,P41) p(12.050354483114535,9.78934303240027,P42) p(11.921904339217631,8.797627064729657,P43) p(11.127278189824663,9.404726136299448,P44) p(11.981100420242639,10.297574103415862,P45) p(12.312845603354747,13.261203987479561,P46) p(11.999096367897012,14.210709868056234,P47) p(11.33367477200376,13.464242119443552,P48) p(11.005804517138044,10.397320790145633,P49) p(9.783737886032815,11.273680508587518,P50) p(12.234003099803271,11.265065826724673,P51) p(10.743645642225971,11.553996579479325,P52) p(11.27609012922527,11.552124602585007,P53) p(11.0132567993587,12.516965854140748,P54) p(10.506452602610736,10.582534041880429,P55) p(11.506446422239957,10.579018247519677,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20) s(P6,P21) s(P15,P21) s(P49,P21) s(P24,P22) s(P25,P22) s(P14,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P31,P45) s(P40,P45) s(P49,P45) s(P39,P46) s(P47,P46) s(P48,P46) s(P23,P47) s(P23,P48) s(P47,P48) s(P19,P49) s(P44,P49) s(P13,P50) s(P21,P50) s(P45,P51) s(P38,P51) s(P14,P52) s(P50,P52) s(P54,P52) s(P51,P53) s(P39,P53) s(P54,P53) s(P48,P54) s(P25,P54) s(P52,P55) s(P50,P55) s(P51,P56) s(P53,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P52,P54) abstand(P52,P54,A0) print(abs(P52,P54):,7.51,15.595) print(A0,8.37,15.595) color(red) s(P55,P56) abstand(P55,P56,A1) print(abs(P55,P56):,7.51,15.398) print(A1,8.37,15.398) color(red) s(P21,P49) abstand(P21,P49,A2) print(abs(P21,P49):,7.51,15.201) print(A2,8.37,15.201) print(min=0.9803833434561051,7.51,15.005) print(max=1.000000000000005,7.51,14.808) \geooff \geoprint() \geo ebene(552.71,546.71) x(7.51,14.76) y(8.45,15.63) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-189.94515907342895,126.52105737164766]; #P[2]=[-158.66288999063147,57.06840251935653]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #Q(22,12,14,ab(4,5,[1,3]),D); #A(20,23,ab(20,23,[1,25],"gespiegelt")); # #N(50,13,21); N(51,45,38); N(52,48,25); #N(49,19,44); # #//A(51,39); A(21,49); A(45,49); #N(53,21,49); N(54,49,45); A(50,53); A(51,54); #R(50,53); N(55,50,53); N(56,54,51); R(55,56); A(55,56); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.506381850598322,11.660980498173515,P1) p(7.91705846020423,10.749199426686179,P2) p(8.501345725999105,11.560746339088627,P3) p(8.912022335605014,10.648965267601291,P4) p(8.327735069810139,9.837418355198842,P5) p(9.496309601399888,11.460512180003741,P6) p(8.506360474371549,11.667518999270987,P7) p(8.000708654431852,12.530256640151268,P8) p(9.00068727820508,12.53679514124874,P9) p(8.495035458265383,13.399532782129022,P10) p(9.49501408203861,13.406071283226494,P11) p(8.989362262098913,14.268808924106775,P12) p(9.177917971347915,12.408471445960274,P13) p(10.148522373898254,12.649151926576994,P14) p(9.171335817933919,10.374389283429597,P15) p(9.214565908813574,9.375324140787468,P16) p(10.058166656937354,9.912295069018223,P17) p(10.101396747817008,8.913229926376093,P18) p(10.944997495940788,9.450200854606848,P19) p(10.988227586820441,8.45113571196472,P20) p(10.12307324235763,10.68130274835305,P21) p(9.64287055395856,13.511889567457278,P22) p(10.953893336907836,14.643799132125734,P23) p(9.971627799503374,14.456304028116254,P24) p(10.62513609136302,13.699384671466756,P25) p(14.434267400884602,11.699391071736269,P26) p(14.033726181854735,10.783112330381833,P27) p(13.440476124409098,11.588130572001702,P28) p(13.03993490537923,10.671851830647267,P29) p(13.63318496282487,9.866833589027397,P30) p(12.446684847933593,11.476870072267136,P31) p(13.434277752228844,11.694841062797929,P32) p(13.930332153228676,12.56313250652446,P33) p(12.930342504572922,12.558582497586118,P34) p(13.42639690557275,13.426873941312648,P35) p(12.426407256916992,13.422323932374308,P36) p(12.922461657916825,14.290615376100838,P37) p(12.75454560456243,12.428301496242568,P38) p(11.781332124203969,12.658204783840999,P39) p(12.78368195828414,10.394417369365906,P40) p(12.751532504156728,9.394934296673172,P41) p(11.902029499615997,9.922518077011679,P42) p(11.869880045488584,8.923035004318946,P43) p(11.020377040947855,9.450618784657454,P44) p(11.828599881969561,10.690758772991238,P45) p(12.277386525203795,13.526496227567531,P46) p(11.93817749741233,14.467207254113285,P47) p(11.293102364699301,13.703088105579976,P48) p(10.9771469500682,10.449683927299583,P49) p(9.804681612305657,11.629262014309582,P50) p(12.1364606385984,11.64219019696667,P51) p(10.964345119154483,12.758673644921,P52) p(10.784834233397518,11.43101762131337,P53) p(11.158566477167732,11.43308972105259,P54) p(10.466442603345545,12.3789768872699,P55) p(11.466427233796571,12.384521145028023,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20) s(P6,P21) s(P15,P21) s(P24,P22) s(P25,P22) s(P14,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P31,P45) s(P40,P45) s(P39,P46) s(P47,P46) s(P48,P46) s(P23,P47) s(P23,P48) s(P47,P48) s(P19,P49) s(P44,P49) s(P13,P50) s(P21,P50) s(P53,P50) s(P45,P51) s(P38,P51) s(P54,P51) s(P48,P52) s(P25,P52) s(P21,P53) s(P49,P53) s(P49,P54) s(P45,P54) s(P50,P55) s(P53,P55) s(P56,P55) s(P54,P56) s(P51,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P50,P53) abstand(P50,P53,A0) print(abs(P50,P53):,7.51,15.628) print(A0,8.36,15.628) color(red) s(P55,P56) abstand(P55,P56,A1) print(abs(P55,P56):,7.51,15.431) print(A1,8.36,15.431) print(min=0.9999999999661818,7.51,15.235) print(max=1.0000000000000022,7.51,15.038) \geooff \geoprint() \geo ebene(485.62,578.54) x(7.96,14.34) y(8.38,15.98) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-155.38660888648582,125.87650827734066]; #P[2]=[-143.1459270831926,50.69394823852216]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #N(22,21,19); N(23,13,21); #Q(26,12,14,ab(4,5,[1,3]),D); # #R(22,23); A(22,23); #//N(30,29,14); #N(30,14,23); # #A(20,27,ab(20,27,[1,30],"gespiegelt")); #R(22,51); R(30,56); A(22,51); A(30,56); #N(57,55,29); N(58,30,56); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.960069790757177,11.652518796240258,P1) p(8.120766627963452,10.665514983424979,P2) p(8.895188584890448,11.298184433161065,P3) p(9.055885422096724,10.311180620345786,P4) p(8.281463465169727,9.6785111706097,P5) p(9.830307379023719,10.943850070081872,P6) p(8.946223179137355,11.81835454204403,P7) p(8.309528516225662,12.58947055550748,P8) p(9.295681904605841,12.75530630131125,P9) p(8.658987241694149,13.526422314774702,P10) p(9.645140630074327,13.692258060578471,P11) p(9.008445967162634,14.463374074041923,P12) p(9.939049491203926,11.937920064115787,P13) p(10.242953825551385,12.890622617678455,P14) p(9.10674424631943,10.243233785939507,P15) p(9.18316798671178,9.246158356543896,P16) p(10.00844876786148,9.810880971873704,P17) p(10.08487250825383,8.813805542478093,P18) p(10.910153289403533,9.378528157807901,P19) p(10.986577029795884,8.38145272841229,P20) p(10.069505061495434,9.972879180353369,P21) p(10.984765985558719,10.375740745761169,P22) p(10.17824717367564,10.966949174387285,P23) p(9.64514063007434,13.692258060578483,P26) p(10.980752743922984,14.7950455656495,P27) p(9.994599355542809,14.629209819845713,P28) p(10.631294018454517,13.858093806382271,P29) p(10.482151508023101,11.919651727949951,P30) p(14.007138267512675,11.658010235499878,P31) p(13.848234321658852,10.670716188119826,P32) p(13.072664568549481,11.301978065680851,P33) p(12.913760622695655,10.314684018300799,P34) p(13.689330375805028,9.683422140739774,P35) p(12.138190869586285,10.945945895861822,P36) p(13.020685309723175,11.822054626042043,P37) p(13.655978398175776,12.594325751854965,P38) p(12.66952544038628,12.758370142397128,P39) p(13.304818528838876,13.530641268210049,P40) p(12.318365571049378,13.694685658752213,P41) p(12.953658659501976,14.466956784565134,P42) p(12.02764347663917,11.939816749601178,P43) p(11.7220093162172,12.891965771542152,P44) p(12.863025289461538,10.246644924620965,P45) p(12.78841259380198,9.249432336630612,P46) p(11.962107507458489,9.812655120511803,P47) p(11.88749481179893,8.815442532521452,P48) p(11.06118972545544,9.37866531640264,P49) p(11.900757088460267,9.974542169504854,P50) p(10.984765985063126,10.37574074576072,P51) p(11.79020969551315,10.96841302324421,P52) p(12.318365571049364,13.694685658752224,P53) p(11.967205701712487,14.631001175107318,P54) p(11.331912613259874,13.858730049294406,P55) p(11.484575535091174,11.920562045185186,P56) p(10.982453887791403,12.92177829002718,P57) p(10.982577707005936,12.785430925766342,P58) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P28,P12) s(P26,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P48,P20) s(P49,P20) s(P6,P21) s(P15,P21) s(P21,P22) s(P19,P22) s(P23,P22) s(P51,P22) s(P13,P23) s(P21,P23) s(P28,P26) s(P29,P26) s(P14,P26) s(P27,P28) s(P27,P29) s(P28,P29) s(P14,P30) s(P23,P30) s(P56,P30) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P32,P35) s(P34,P35) s(P33,P36) s(P34,P36) s(P31,P37) s(P31,P38) s(P37,P38) s(P37,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P39,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P53,P42) s(P54,P42) s(P36,P43) s(P37,P43) s(P41,P44) s(P43,P44) s(P35,P45) s(P35,P46) s(P45,P46) s(P45,P47) s(P46,P47) s(P46,P48) s(P47,P48) s(P47,P49) s(P48,P49) s(P36,P50) s(P45,P50) s(P49,P51) s(P50,P51) s(P52,P51) s(P43,P52) s(P50,P52) s(P44,P53) s(P54,P53) s(P55,P53) s(P27,P54) s(P27,P55) s(P54,P55) s(P44,P56) s(P52,P56) s(P55,P57) s(P29,P57) s(P30,P58) s(P56,P58) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P22,P23) abstand(P22,P23,A0) print(abs(P22,P23):,7.96,15.977) print(A0,8.81,15.977) color(red) s(P22,P51) abstand(P22,P51,A1) print(abs(P22,P51):,7.96,15.78) print(A1,8.81,15.78) color(red) s(P30,P56) abstand(P30,P56,A2) print(abs(P30,P56):,7.96,15.583) print(A2,8.81,15.583) print(min=4.955930604124243e-10,7.96,15.386) print(max=1.0024244404047833,7.96,15.189) \geooff \geoprint()


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1156, eingetragen 2018-04-22

\quoteon(2018-04-16 03:54 - Slash in Beitrag No. 1136) Einfach an den Rauten orientieren, z.B. der sehr schmalen. \quoteoff das ist leider nicht einfach slash, stefan hat jedenfals in #1153 die schmalste raute nicht an der gleichen position wie du in #1141 angeordnet... bei dir liegt sie ca auf 10uhr bei ihm kurz vor 9uhr... ihr habt also wohl mit hohem aufwand verschiedene graphen durchgespielt? ich hab auch versucht deinen #1141 nachzuvollziehen und komme auf folgendes nachdem ich deinen linken kern in "normallage" gespiegegelt und gedreht habe (damit du auch ne chance hast diese transaktion zurückzuverstehen hatte ich vorher NSWO (nord-süd-west-ost) draufgeschrieben) http://www.matheplanet.com/matheplanet/nuke/html/uploads/b/35059_st-_1141.PNG also du benutzt den kern mit einer punktspiegelung zweimal, dadurch entsteht das grüne parallelogram, dies parallelogram erfordert zwei parallele linien im roten kern, die habe ich mit A und B bezeichnet, den kern öffnest du rechts oben, verwendest aber gleichzeitig im hinterlegten bereich neue verbindungen...und da müsste dann nach dem parallelisieren auch noch die gelbe 1,2 passen... ich denke das sind zu viele schritte auf einmal, meine frage wäre also erstmal: ob man A und B parallelisieren kann wenn man oben an der angegebenen stelle öffnet...


   Profil
haribo
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 25.10.2012
Mitteilungen: 3314
  Beitrag No.1157, eingetragen 2018-04-22

\quoteon(2018-04-22 04:06 - Slash in Beitrag No. 1155) Ein paar Versuche. \geo ebene(552.71,546.71) x(7.51,14.76) y(8.45,15.63) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-189.94515907342895,126.52105737164766]; #P[2]=[-158.66288999063147,57.06840251935653]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); L(19,17,18); L(20,19,18); N(21,6,15); #Q(22,12,14,ab(4,5,[1,3]),D); #A(20,23,ab(20,23,[1,25],"gespiegelt")); # #N(50,13,21); N(51,45,38); N(52,48,25); #N(49,19,44); # #//A(51,39); A(21,49); A(45,49); #N(53,21,49); N(54,49,45); A(50,53); A(51,54); #R(50,53); N(55,50,53); N(56,54,51); R(55,56); A(55,56); # # # #//Ende der Eingabe, weiter mit fedgeo: p(7.506381850598322,11.660980498173515,P1) p(7.91705846020423,10.749199426686179,P2) p(8.501345725999105,11.560746339088627,P3) p(8.912022335605014,10.648965267601291,P4) p(8.327735069810139,9.837418355198842,P5) p(9.496309601399888,11.460512180003741,P6) p(8.506360474371549,11.667518999270987,P7) p(8.000708654431852,12.530256640151268,P8) p(9.00068727820508,12.53679514124874,P9) p(8.495035458265383,13.399532782129022,P10) p(9.49501408203861,13.406071283226494,P11) p(8.989362262098913,14.268808924106775,P12) p(9.177917971347915,12.408471445960274,P13) p(10.148522373898254,12.649151926576994,P14) p(9.171335817933919,10.374389283429597,P15) p(9.214565908813574,9.375324140787468,P16) p(10.058166656937354,9.912295069018223,P17) p(10.101396747817008,8.913229926376093,P18) p(10.944997495940788,9.450200854606848,P19) p(10.988227586820441,8.45113571196472,P20) p(10.12307324235763,10.68130274835305,P21) p(9.64287055395856,13.511889567457278,P22) p(10.953893336907836,14.643799132125734,P23) p(9.971627799503374,14.456304028116254,P24) p(10.62513609136302,13.699384671466756,P25) p(14.434267400884602,11.699391071736269,P26) p(14.033726181854735,10.783112330381833,P27) p(13.440476124409098,11.588130572001702,P28) p(13.03993490537923,10.671851830647267,P29) p(13.63318496282487,9.866833589027397,P30) p(12.446684847933593,11.476870072267136,P31) p(13.434277752228844,11.694841062797929,P32) p(13.930332153228676,12.56313250652446,P33) p(12.930342504572922,12.558582497586118,P34) p(13.42639690557275,13.426873941312648,P35) p(12.426407256916992,13.422323932374308,P36) p(12.922461657916825,14.290615376100838,P37) p(12.75454560456243,12.428301496242568,P38) p(11.781332124203969,12.658204783840999,P39) p(12.78368195828414,10.394417369365906,P40) p(12.751532504156728,9.394934296673172,P41) p(11.902029499615997,9.922518077011679,P42) p(11.869880045488584,8.923035004318946,P43) p(11.020377040947855,9.450618784657454,P44) p(11.828599881969561,10.690758772991238,P45) p(12.277386525203795,13.526496227567531,P46) p(11.93817749741233,14.467207254113285,P47) p(11.293102364699301,13.703088105579976,P48) p(10.9771469500682,10.449683927299583,P49) p(9.804681612305657,11.629262014309582,P50) p(12.1364606385984,11.64219019696667,P51) p(10.964345119154483,12.758673644921,P52) p(10.784834233397518,11.43101762131337,P53) p(11.158566477167732,11.43308972105259,P54) p(10.466442603345545,12.3789768872699,P55) p(11.466427233796571,12.384521145028023,P56) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P24,P12) s(P22,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P17,P19) s(P18,P19) s(P19,P20) s(P18,P20) s(P43,P20) s(P44,P20) s(P6,P21) s(P15,P21) s(P24,P22) s(P25,P22) s(P14,P22) s(P23,P24) s(P23,P25) s(P24,P25) s(P26,P27) s(P26,P28) s(P27,P28) s(P27,P29) s(P28,P29) s(P27,P30) s(P29,P30) s(P28,P31) s(P29,P31) s(P26,P32) s(P26,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P34,P36) s(P35,P36) s(P35,P37) s(P36,P37) s(P46,P37) s(P47,P37) s(P31,P38) s(P32,P38) s(P36,P39) s(P38,P39) s(P30,P40) s(P30,P41) s(P40,P41) s(P40,P42) s(P41,P42) s(P41,P43) s(P42,P43) s(P42,P44) s(P43,P44) s(P31,P45) s(P40,P45) s(P39,P46) s(P47,P46) s(P48,P46) s(P23,P47) s(P23,P48) s(P47,P48) s(P19,P49) s(P44,P49) s(P13,P50) s(P21,P50) s(P53,P50) s(P45,P51) s(P38,P51) s(P54,P51) s(P48,P52) s(P25,P52) s(P21,P53) s(P49,P53) s(P49,P54) s(P45,P54) s(P50,P55) s(P53,P55) s(P56,P55) s(P54,P56) s(P51,P56) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P50,P53) abstand(P50,P53,A0) print(abs(P50,P53):,7.51,15.628) print(A0,8.36,15.628) color(red) s(P55,P56) abstand(P55,P56,A1) print(abs(P55,P56):,7.51,15.431) print(A1,8.36,15.431) print(min=0.9999999999661818,7.51,15.235) print(max=1.0000000000000022,7.51,15.038) \geooff \geoprint() \quoteoff dieser 2-3-4er sieht sehr gut aus, einfach symetrisch mit viereinhalb verbindungen über die symetrieachse, ich hoffe ich hab den richtigen ausgewählt haribo grus haribo


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1158, vom Themenstarter, eingetragen 2018-04-22

Noch zwei schöne. Ein richtiger 3-4er, \geo ebene(446.76,481.91) x(8.34,14.2) y(8.78,15.11) form(.) #//Eingabe war: # #No.528-3: 4/4 fast mit 108 # # # # #P[1]=[-98.57935706590672,-21.757803876953385]; #P[2]=[-31.169268679797796,-57.22795483204544]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #A(18,21,ab(21,18,[1,23])); # #N(45,17,44); N(46,13,19); N(47,36,41); N(48,40,23); #R(14,46); A(14,46); A(37,47); N(49,46,19); N(50,47,41); #R(45,49); A(45,49); A(48,50); # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.70584080618309,9.71436147726345,P1) p(9.5908068704532,9.248705955348084,P2) p(9.551593349709353,10.247936809450815,P3) p(10.436559413979463,9.782281287535449,P4) p(10.475772934723311,8.783050433432718,P5) p(10.397345893235617,10.78151214163818,P6) p(9.503848556112544,10.31700866347818,P7) p(8.58293690836665,10.70678005422658,P8) p(9.380944658296102,11.309427240441313,P9) p(8.460033010550209,11.699198631189713,P10) p(9.25804076047966,12.301845817404443,P11) p(8.337129112733768,12.691617208152843,P12) p(9.552071891382042,11.315845241670774,P13) p(10.226814291799705,12.053898554839009,P14) p(10.977255904116921,9.648217949817937,P15) p(11.475771467138804,8.781337200565208,P16) p(11.977254436532414,9.646504716950426,P17) p(12.475769999554299,8.779623967697697,P18) p(11.373890011995412,10.566194738450108,P19) p(9.305902644053813,12.443669945587414,P20) p(9.735359900414757,14.121634922861652,P21) p(9.036244506574262,13.406626065507247,P22) p(10.005018037894308,13.158678802941818,P23) p(13.505289093785965,13.186897413295899,P24) p(12.620323029515855,13.652552935211265,P25) p(12.659536550259702,12.653322081108534,P26) p(11.774570485989592,13.1189776030239,P27) p(11.735356965245744,14.118208457126629,P28) p(11.813784006733439,12.11974674892117,P29) p(12.707281343856511,12.584250227081169,P30) p(13.628192991602404,12.194478836332767,P31) p(12.830185241672954,11.591831650118039,P32) p(13.751096889418847,11.202060259369638,P33) p(12.953089139489393,10.599413073154906,P34) p(13.874000787235287,10.209641682406506,P35) p(12.659058008587014,11.585413648888576,P36) p(11.98431560816935,10.847360335720342,P37) p(11.233873995852136,13.253040940741412,P38) p(10.73535843283025,14.119921689994143,P39) p(10.233875463436664,13.254754173608935,P40) p(10.837239887973647,12.335064152109243,P41) p(12.905227255915243,10.457588944971935,P42) p(13.174885393394792,9.4946328250521,P43) p(12.206111862074748,9.742580087617531,P44) p(11.70759629905286,10.609460836870259,P45) p(10.528616010141837,11.100527838482702,P46) p(11.682513889827217,11.80073105207664,P47) p(10.503533600916215,12.291798053689103,P48) p(11.413999049779742,11.565390047230135,P49) p(10.797130850189305,11.335868843329218,P50) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P46,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P39,P21) s(P40,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P24,P25) s(P24,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P25,P28) s(P27,P28) s(P26,P29) s(P27,P29) s(P24,P30) s(P24,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P42,P35) s(P43,P35) s(P29,P36) s(P30,P36) s(P34,P37) s(P36,P37) s(P47,P37) s(P28,P38) s(P28,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P29,P41) s(P38,P41) s(P37,P42) s(P43,P42) s(P44,P42) s(P18,P43) s(P18,P44) s(P43,P44) s(P17,P45) s(P44,P45) s(P49,P45) s(P13,P46) s(P19,P46) s(P36,P47) s(P41,P47) s(P40,P48) s(P23,P48) s(P50,P48) s(P46,P49) s(P19,P49) s(P47,P50) s(P41,P50) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P14,P46) abstand(P14,P46,A0) print(abs(P14,P46):,8.34,15.106) print(A0,9.19,15.106) color(red) s(P45,P49) abstand(P45,P49,A1) print(abs(P45,P49):,8.34,14.909) print(A1,9.19,14.909) print(min=0.9999999999999765,8.34,14.712) print(max=1.0000000000000018,8.34,14.515) \geooff \geoprint() ...und ein falscher 4er mit 100 Kanten. Leider zwei sehr kurze dabei. \geo ebene(421.74,500.9) x(8.64,14.18) y(8.68,15.25) form(.) #//Eingabe war: # #4/4 fast mit 100 # # # # #P[1]=[-103.05238707191587,-13.603650943102565]; #P[2]=[-40.467487269860584,-57.02463598221402]; D=ab(1,2); A(2,1); L(3,1,2); #L(4,3,2); L(5,4,2); L(6,3,4); #M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13); M(15,5,4,gruenerWinkel); #L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15); #Q(20,12,14,ab(4,5,[1,3]),D); # #A(18,21,ab(21,18,[1,23])); # #N(45,17,44); N(46,13,19); N(47,36,41); N(48,40,23); #R(14,46); A(14,46); A(37,47); # #N(49,45,48); R(49,19); A(49,19); #N(50,48,45); A(41,50); R(46,49); A(46,49); A(47,50); # # # #//Ende der Eingabe, weiter mit fedgeo: p(8.647118442000645,9.821409974040286,P1) p(9.468738970716302,9.251375144584221,P2) p(9.551593349709353,10.247936809450815,P3) p(10.373213878425013,9.677901979994752,P4) p(10.29035949943196,8.681340315128159,P5) p(10.456068257418064,10.674463644861344,P6) p(9.512689632555588,10.322195870488356,P7) p(8.646210729097124,10.821409562068844,P8) p(9.51178191965207,11.322195458516912,P9) p(8.645303016193605,11.8214091500974,P10) p(9.510874206748548,12.32219504654547,P11) p(8.644395303290086,12.821408738125958,P12) p(9.682138324105331,11.307734880843643,P13) p(10.44208670195301,11.957718313714576,P14) p(10.79287852878163,9.54590646363356,P15) p(11.290355261964542,8.678429144078947,P16) p(11.792874291314213,9.54299529258435,P17) p(12.290351024497125,8.675517973029736,P18) p(11.398944611247149,10.341320760515947,P19) p(9.575607798494543,12.45693200529506,P20) p(10.206900017934368,14.06983935963217,P21) p(9.425647660612226,13.445624048879065,P22) p(10.356860155816685,13.081147316048167,P23) p(13.850132600430848,12.923947358621621,P24) p(13.02851207171519,13.493982188077686,P25) p(12.945657692722138,12.497420523211092,P26) p(12.124037164006483,13.067455352667157,P27) p(12.206891542999534,14.064017017533748,P28) p(12.041182785013428,12.070893687800561,P29) p(12.984561409875903,12.423161462173553,P30) p(13.851040313334368,11.923947770593065,P31) p(12.985469122779424,11.423161874144995,P32) p(13.851948026237888,10.923948182564507,P33) p(12.986376835682943,10.423162286116437,P34) p(13.85285573914141,9.923948594535949,P35) p(12.815112718326162,11.437622451818264,P36) p(12.055164340478482,10.787639018947331,P37) p(11.704372513649865,13.199450869028345,P38) p(11.20689578046695,14.06692818858296,P39) p(10.70437675111728,13.202362040077556,P40) p(11.09830643118434,12.404036572145959,P41) p(12.92164324393695,10.288425327366847,P42) p(13.071603381819267,9.299733283782842,P43) p(12.140390886614808,9.66421001661374,P44) p(11.6429141534319,10.531687336168355,P45) p(10.625014677934415,10.974591996498246,P46) p(11.87223636449708,11.770765336163668,P47) p(10.854336888999592,12.21366999649355,P48) p(10.91316455764812,11.215401843439784,P49) p(11.584086484783372,11.529955489222123,P50) nolabel() s(P1,P2) s(P1,P3) s(P2,P3) s(P3,P4) s(P2,P4) s(P4,P5) s(P2,P5) s(P3,P6) s(P4,P6) s(P1,P7) s(P1,P8) s(P7,P8) s(P8,P9) s(P7,P9) s(P8,P10) s(P9,P10) s(P10,P11) s(P9,P11) s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12) s(P7,P13) s(P6,P13) s(P11,P14) s(P13,P14) s(P46,P14) s(P5,P15) s(P15,P16) s(P5,P16) s(P15,P17) s(P16,P17) s(P17,P18) s(P16,P18) s(P6,P19) s(P15,P19) s(P22,P20) s(P23,P20) s(P14,P20) s(P39,P21) s(P40,P21) s(P21,P22) s(P21,P23) s(P22,P23) s(P24,P25) s(P24,P26) s(P25,P26) s(P25,P27) s(P26,P27) s(P25,P28) s(P27,P28) s(P26,P29) s(P27,P29) s(P24,P30) s(P24,P31) s(P30,P31) s(P30,P32) s(P31,P32) s(P31,P33) s(P32,P33) s(P32,P34) s(P33,P34) s(P33,P35) s(P34,P35) s(P42,P35) s(P43,P35) s(P29,P36) s(P30,P36) s(P34,P37) s(P36,P37) s(P47,P37) s(P28,P38) s(P28,P39) s(P38,P39) s(P38,P40) s(P39,P40) s(P29,P41) s(P38,P41) s(P50,P41) s(P37,P42) s(P43,P42) s(P44,P42) s(P18,P43) s(P18,P44) s(P43,P44) s(P17,P45) s(P44,P45) s(P13,P46) s(P19,P46) s(P49,P46) s(P36,P47) s(P41,P47) s(P50,P47) s(P40,P48) s(P23,P48) s(P45,P49) s(P48,P49) s(P19,P49) s(P48,P50) s(P45,P50) pen(2) color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10) color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11) pen(2) color(red) s(P14,P46) abstand(P14,P46,A0) print(abs(P14,P46):,8.64,15.251) print(A0,9.5,15.251) color(red) s(P49,P19) abstand(P49,P19,A1) print(abs(P49,P19):,8.64,15.054) print(A1,9.5,15.054) color(red) s(P46,P49) abstand(P46,P49,A2) print(abs(P46,P49):,8.64,14.858) print(A2,9.5,14.858) print(min=0.3755259452594842,8.64,14.661) print(max=1.0000000000000064,8.64,14.464) \geooff \geoprint()


   Profil
Slash
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 23.03.2005
Mitteilungen: 8614
Wohnort: Sahlenburg (Cuxhaven)
  Beitrag No.1159, vom Themenstarter, eingetragen 2018-04-22

Hier noch einige, die ich noch nicht eingegeben habe. Sie sind aber wohl alle korrekt. Nur die zwei dicken Kanten sind zu kurz. Ein 4/4 oder 4/5 ist leider nicht dabei. Viele Graphen sind starr. Zur Orientierung seien sie wie folgt durchnummeriert: 1 2 3 4 5 6 7 8 http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_slash_4er_neu_2018_a.png Bei Nr.4 könnte vielleicht noch was drin sein. Man kann einen 4/4 draus machen mit 2 zu langen und 2 zu kurzen Kanten in der Mitte. http://www.matheplanet.de/matheplanet/nuke/html/uploads/b/8038_slash_4er_neu_2018_b.png


   Profil
-->> Fortsetzung auf der nächsten Seite -->>
Seite 29Gehe zur Seite: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 | 49 | 50 | 51 | 52 | 53 | 54  

Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]