Autor
Streichholzgraphen 4-regulär und 4/n-regulär (n>4) und 2/5
haribo
Senior Dabei seit: 25.10.2012 Mitteilungen: 2664
Beitrag No.1320, eingetragen 2018-07-19
für die vierfarbige colorierung würde ich allerdings etwas einfacheres vorschlagen
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1321, vom Themenstarter, eingetragen 2018-08-06
Um mal das Sommerloch zu füllen... 😎
Ich habe noch den Artikel "Minimal Distances Between Two Vertices in Rigid 4-regular Matchstick Graphs" in Arbeit.
Ein weiterer Artikel ist in Planung mit dem Arbeits-Titel "4-regular Matchstick Graphs with Two Forbidden Distances". Hier sollen die Graphen vorgestellt werden, die zwei leicht zu kurze oder lange Kanten haben. -----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1322, vom Themenstarter, eingetragen 2018-08-18
So, damit es hier mal irgendwie weitergeht... 😉
Ich habe mal die Beiträge mit den 4-reg. Graphen, die nur zwei leicht falsche Kanten besitzen, zusammengetragen. Wer noch einen kennt bzw. findet postet ihn bitte.
#1145 108er
#1162 108er
#1165 108er
#1183 108er
#1240 112er
#1172 112er
#428 zwei 114er
#1179 zwei 116er
#1178 122er
#1174 128er
Gruß, Slash -----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1323, vom Themenstarter, eingetragen 2018-08-19
Hatten wir diesen fast 108er schon gehabt?
\geo
ebene(612.92,456.13)
x(7.12,15.16)
y(9.04,15.03)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 108</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''4.672424893369324''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''-15.025133630679624''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''1.7776275665090848''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-219.7202155585146,79.27657805471472];
#P[2]=[-173.6162610696753,18.64096965922215]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,2); N(11,9,7); M(12,5,4,gruenerWinkel);
#N(13,12,5); N(14,12,13); N(15,14,13); N(16,14,15); N(17,16,15); N(18,6,12);
#N(19,18,16); N(20,6,18);
#M(21,10,9,orange_angle); N(22,10,21); N(23,22,21); N(24,22,23); N(25,24,23);
#N(26,24,25);
#A(17,26,ab(26,17,[1,27])); N(51,21,11); N(52,46,37); N(53,25,51); N(54,50,52);
#
#RA(51,20); A(45,52);
#RA(19,54); A(44,53);
#RA(53,19); A(44,54);
#RA(11,20); A(45,37);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(7.115492071607192,11.040750471473013,P1)
p(7.720749179676531,10.244720426103152,P2)
p(8.10750286710784,11.166903480197233,P3)
p(8.712759975177178,10.370873434827372,P4)
p(8.32600628774587,9.448690380733291,P5)
p(9.099513662608487,11.293056488921453,P6)
p(8.093929846150285,11.247292286481882,P7)
p(7.425840500137312,11.991373347754077,P8)
p(8.404278274680404,12.197915162762946,P9)
p(7.736188928667431,12.94199622403514,P10)
p(9.07236762069338,11.45383410149075,P11)
p(8.938606976489885,10.239082938991755,P12)
p(9.316806666531878,9.313358901034363,P13)
p(9.929407355275893,10.103751459292825,P14)
p(10.307607045317885,9.178027421335432,P15)
p(10.920207734061902,9.968419979593897,P16)
p(11.298407424103894,9.042695941636502,P17)
p(9.855426663246336,10.638384406527004,P18)
p(10.801824418318644,10.961387950151673,P19)
p(10.044432817429463,11.620360309327529,P20)
p(8.427038505410353,12.218997702380964,P21)
p(8.707748803690004,13.17879024686115,P22)
p(9.398598380432926,12.455791725206973,P23)
p(9.679308678712575,13.415584269687159,P24)
p(10.370158255455497,12.69258574803298,P25)
p(10.650868553735148,13.652378292513166,P26)
p(14.833783906231847,11.65432376267666,P27)
p(14.228526798162513,12.450353808046518,P28)
p(13.841773110731204,11.528170753952438,P29)
p(13.236516002661865,12.324200799322298,P30)
p(13.623269690093174,13.24638385341638,P31)
p(12.849762315230555,11.402017745228218,P32)
p(13.855346131688755,11.447781947667789,P33)
p(14.52343547770173,10.703700886395595,P34)
p(13.544997703158637,10.497159071386724,P35)
p(14.21308704917161,9.753078010114528,P36)
p(12.876908357145663,11.24124013265892,P37)
p(13.010669001349157,12.455991295157915,P38)
p(12.632469311307165,13.381715333115308,P39)
p(12.019868622563148,12.591322774856845,P40)
p(11.641668932521156,13.517046812814238,P41)
p(11.02906824377714,12.726654254555775,P42)
p(12.093849314592706,12.056689827622666,P43)
p(11.147451559520393,11.733686283997995,P44)
p(11.904843160409579,11.074713924822143,P45)
p(13.522237472428689,10.476076531768706,P46)
p(13.241527174149038,9.51628398728852,P47)
p(12.550677597406118,10.239282508942697,P48)
p(12.269967299126467,9.279489964462512,P49)
p(11.579117722383545,10.00248848611669,P50)
p(9.411504865417598,12.39457100904826,P51)
p(12.537771112421446,10.30050322510141,P52)
p(10.147579812988953,11.717670963577865,P53)
p(11.801696164850089,10.977403270571807,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P9,P11) s(P7,P11) s(P20,P11)
s(P5,P12)
s(P12,P13) s(P5,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17) s(P49,P17) s(P50,P17)
s(P6,P18) s(P12,P18)
s(P18,P19) s(P16,P19) s(P54,P19)
s(P6,P20) s(P18,P20)
s(P10,P21)
s(P10,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P41,P26) s(P42,P26)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P28,P30) s(P29,P30)
s(P28,P31) s(P30,P31)
s(P29,P32) s(P30,P32)
s(P27,P33)
s(P27,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P33,P37) s(P35,P37)
s(P31,P38)
s(P31,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P32,P43) s(P38,P43)
s(P42,P44) s(P43,P44) s(P53,P44) s(P54,P44)
s(P32,P45) s(P43,P45) s(P52,P45) s(P37,P45)
s(P36,P46)
s(P36,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P21,P51) s(P11,P51) s(P20,P51)
s(P46,P52) s(P37,P52)
s(P25,P53) s(P51,P53) s(P19,P53)
s(P50,P54) s(P52,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P12,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P9,P10,MA12) m(P10,P21,MB12) f(P10,MA12,MB12)
pen(2)
color(red) s(P51,P20) abstand(P51,P20,A0) print(abs(P51,P20):,7.12,15.031) print(A0,7.97,15.031)
color(red) s(P19,P54) abstand(P19,P54,A1) print(abs(P19,P54):,7.12,14.834) print(A1,7.97,14.834)
color(red) s(P53,P19) abstand(P53,P19,A2) print(abs(P53,P19):,7.12,14.637) print(A2,7.97,14.637)
color(red) s(P11,P20) abstand(P11,P20,A3) print(abs(P11,P20):,7.12,14.44) print(A3,7.97,14.44)
print(min=0.9862260007736856,7.12,14.243)
print(max=1.0000000000000038,7.12,14.046)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1324, vom Themenstarter, eingetragen 2018-08-19
Fast ein 110er. Vielleicht auch schon mal da gewesen.
\geo
ebene(561.13,565.96)
x(6.94,14.04)
y(8.03,15.19)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 110</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''363.7482288685233''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''-704.5642470653913''/>
#<Feinjustieren Anzahl=''2''/>
#<Rechenweg>
#P[1]=[-200.57291126192445,-79.93074941651577];
#P[2]=[-125.69579330087572,-105.1576828379053]; D=ab(1,2); A(2,1,Bew(1));
#L(3,1,2); L(4,3,2); L(5,4,2); L(6,4,5); L(7,6,5); M(8,1,3,blauerWinkel,2);
#L(12,10,8); N(13,12,3);
#N(14,13,6); L(15,13,14); L(16,15,14); N(17,12,15); N(18,17,11); L(19,11,18);
#L(20,19,18); L(21,19,20); L(22,21,20); L(23,21,22); N(24,22,17);
#M(25,23,22,green_angle); N(26,23,25); N(27,26,25); N(28,26,27); RA(24,25);
#A(28,7,ab(28,7,[1,28],''gespiegelt''));
#N(55,54,27);
#RA(24,16); A(51,43);
#RA(16,55); A(43,55);
#
#</Rechenweg>
#
#<Knopf id=''Stopp_alleWinkel'' color=''grey''/>
#<Knopf id=''Start_blauerWinkel'' color=''blue''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#blauerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_blauerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0s''/>
#
#<Knopf id=''start_green_angle'' color=''green''/>
#<animate a0:href=''#green_angle'' xmlns:a0=''http://www.w3.org/1999/xlink''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_green_angle.click+0s'' end=''stop_all_angles.click+0s''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(7.461505230603489,8.988378899068778,P1)
p(8.4091664630986,8.669101295053323,P2)
p(8.211838362787855,9.649438798583487,P3)
p(9.159499595282966,9.330161194568033,P4)
p(9.35682769559371,8.349823691037871,P5)
p(10.107160827778076,9.01088359055258,P6)
p(10.30448892808882,8.030546087022419,P7)
p(8.167018363546063,9.69707574486785,P8)
p(7.200512325030876,9.95371961780013,P9)
p(7.906025457973449,10.662416463599202,P10)
p(6.939519419458263,10.919060336531484,P11)
p(8.872531496488635,10.405772590666922,P12)
p(9.193474127229756,9.458673953896197,P13)
p(10.02918799575213,10.007839074747263,P14)
p(9.135740115961568,10.457005954757074,P15)
p(9.971453984483942,11.00617107560814,P16)
p(8.814797485220447,11.404104591527801,P17)
p(7.939518402588441,10.920486428607017,P18)
p(7.438283879057804,11.785797905718592,P19)
p(8.438282862187982,11.787223997794126,P20)
p(7.937048338657345,12.6525354749057,P21)
p(8.937047321787524,12.653961566981234,P22)
p(8.435812798256887,13.51927304409281,P23)
p(9.650511353742818,11.953269712378873,P24)
p(9.149276830212179,12.818581189490446,P25)
p(9.39936176054501,13.786805093151383,P26)
p(10.112825792500303,13.086113238549022,P27)
p(10.362910722833135,14.054337142209956,P28)
p(13.16551520144373,8.93305850420731,P29)
p(12.211839776992093,8.632221031812344,P30)
p(12.428144595713572,9.608546912549853,P31)
p(11.474469171261937,9.30770944015489,P32)
p(11.25816435254045,8.331383559417379,P33)
p(10.520793746810305,9.006871967759924,P34)
p(12.473880091958776,9.655305605501415,P35)
p(13.44518198423162,9.89315562981756,P36)
p(12.753546874746668,10.615402731111667,P37)
p(13.724848767019513,10.853252755427816,P38)
p(11.78224498247382,10.377552706795518,P39)
p(11.442993560059849,9.436856968317825,P40)
p(10.61808805747738,10.002127621907045,P41)
p(11.520079554790719,10.433881416070411,P42)
p(10.69517405220826,10.999152069659633,P43)
p(11.859330977204694,11.374577154548106,P44)
p(12.725065547510994,10.874073754183467,P45)
p(13.24298867111981,11.729500921177413,P46)
p(12.243205451611294,11.750321919933064,P47)
p(12.761128575220113,12.605749086927009,P48)
p(11.761345355711594,12.62657008568266,P49)
p(12.279268479320411,13.481997252676605,P50)
p(11.03442547462224,11.939847808137333,P51)
p(11.552348598231061,12.795274975131274,P52)
p(11.321089601076773,13.768167197443281,P53)
p(10.594169719987423,13.081444919897951,P54)
p(10.34408478965459,12.113221016237016,P55)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7) s(P33,P7) s(P34,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P10,P12) s(P8,P12)
s(P12,P13) s(P3,P13)
s(P13,P14) s(P6,P14)
s(P13,P15) s(P14,P15)
s(P15,P16) s(P14,P16) s(P55,P16)
s(P12,P17) s(P15,P17)
s(P17,P18) s(P11,P18)
s(P11,P19) s(P18,P19)
s(P19,P20) s(P18,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P22,P24) s(P17,P24) s(P25,P24) s(P16,P24)
s(P23,P25)
s(P23,P26) s(P25,P26)
s(P26,P27) s(P25,P27)
s(P26,P28) s(P27,P28) s(P53,P28) s(P54,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P35,P39) s(P37,P39)
s(P31,P40) s(P39,P40)
s(P34,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43) s(P55,P43)
s(P39,P44) s(P42,P44)
s(P38,P45) s(P44,P45)
s(P38,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P44,P51) s(P49,P51) s(P52,P51) s(P43,P51)
s(P50,P52)
s(P50,P53) s(P52,P53)
s(P52,P54) s(P53,P54)
s(P54,P55) s(P27,P55)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) b(P1,MA10,MB10)
color(#008000) m(P22,P23,MA11) m(P23,P25,MB11) b(P23,MA11,MB11)
pen(2)
color(red) s(P24,P25) abstand(P24,P25,A0) print(abs(P24,P25):,6.94,15.193) print(A0,7.76,15.193)
color(red) s(P24,P16) abstand(P24,P16,A1) print(abs(P24,P16):,6.94,15.004) print(A1,7.76,15.004)
color(red) s(P16,P55) abstand(P16,P55,A2) print(abs(P16,P55):,6.94,14.814) print(A2,7.76,14.814)
print(min=0.9999999999999908,6.94,14.624)
print(max=1.1680810280149745,6.94,14.434)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1325, vom Themenstarter, eingetragen 2018-08-19
Den fast 120er aus #1174 nochmal genauer und mit nur zwei falschen Kanten.
\geo
ebene(515.02,557.35)
x(7.22,14.66)
y(8.16,16.21)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 120</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''27.887059034904784''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''-10.530629188836404''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''7.003787263199434''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-181.05162452608948,158.3595924220553];
#P[2]=[-186.7891028898959,89.34995092983519]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,11,13); N(29,28,27); N(30,29,27); N(31,30,18);
#
#A(20,26,ab(26,20,[1,31]));
#
#RA(29,59); A(30,58);
#RA(31,55); A(25,60);
#RA(19,31); A(50,60);
#RA(21,28); A(51,57);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(7.385450721623268,12.286855802453488,P1)
p(7.302596342630217,11.290294137586894,P2)
p(8.207071250338927,11.716820972997425,P3)
p(8.124216871345876,10.720259308130833,P4)
p(7.2197419636371665,10.293732472720302,P5)
p(9.028691779054585,11.146786143541364,P6)
p(8.378280023317046,12.16731510771632,P7)
p(7.985390650898587,13.08690085197328,P8)
p(8.978219952592365,12.967360157236111,P9)
p(8.585330580173904,13.886945901493071,P10)
p(9.578159881867682,13.767405206755903,P11)
p(9.185270509449222,14.686990951012863,P12)
p(9.374882276991633,12.084950382434586,P13)
p(8.186935640417367,10.547772610486751,P14)
p(7.92334401491391,9.583138247132197,P15)
p(8.89053769169411,9.837178384898646,P16)
p(8.626946066190653,8.872544021544092,P17)
p(9.104266104240823,10.149645972164919,P18)
p(9.594139742970855,9.126584159310541,P19)
p(9.330548117467398,8.161949795955987,P20)
p(9.687357820601283,13.822174015482519,P21)
p(10.18526760081754,14.689402849623196,P22)
p(10.6873549119696,13.824585914092854,P23)
p(11.185264692185855,14.691814748233533,P24)
p(11.687352003337915,13.826997812703189,P25)
p(12.185261783554171,14.694226646843866,P26)
p(9.450456602177871,11.087810211058141,P27)
p(10.003729304778242,12.862479427322267,P28)
p(10.079303629964478,11.865339255945823,P29)
p(10.438240021124157,10.93197723234444,P30)
p(10.09204952318711,9.993812993451218,P31)
p(14.130359179398301,10.569320640346364,P32)
p(14.213213558391352,11.565882305212957,P33)
p(13.308738650682642,11.139355469802428,P34)
p(13.391593029675692,12.135917134669022,P35)
p(14.2960679373844,12.562443970079553,P36)
p(12.487118121966983,11.709390299258489,P37)
p(13.137529877704525,10.688861335083534,P38)
p(13.530419250122984,9.769275590826572,P39)
p(12.537589948429204,9.888816285563742,P40)
p(12.930479320847665,8.969230541306782,P41)
p(11.937650019153887,9.08877123604395,P42)
p(12.330539391572346,8.16918549178699,P43)
p(12.140927624029935,10.771226060365269,P44)
p(13.328874260604202,12.308403832313102,P45)
p(13.592465886107657,13.273038195667658,P46)
p(12.625272209327456,13.01899805790121,P47)
p(12.888863834830918,13.983632421255761,P48)
p(12.411543796780744,12.706530470634934,P49)
p(11.921670158050743,13.7295922834893,P50)
p(11.828452080420286,9.034002427317333,P51)
p(11.33054230020403,8.166773593176655,P52)
p(10.82845498905197,9.031590528707,P53)
p(10.330545208835714,8.16436169456632,P54)
p(9.828457897683654,9.029178630096665,P55)
p(12.065353298843702,11.768366231741709,P56)
p(11.512080596243328,9.993697015477586,P57)
p(11.43650627105709,10.990837186854032,P58)
p(11.077569879897395,11.92419921045542,P59)
p(11.423760377834485,12.862363449348623,P60)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19) s(P31,P19)
s(P19,P20) s(P17,P20) s(P54,P20) s(P55,P20)
s(P12,P21) s(P28,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25) s(P60,P25)
s(P24,P26) s(P25,P26) s(P48,P26) s(P50,P26)
s(P13,P27) s(P18,P27)
s(P11,P28) s(P13,P28)
s(P28,P29) s(P27,P29) s(P59,P29)
s(P29,P30) s(P27,P30) s(P58,P30)
s(P30,P31) s(P18,P31) s(P55,P31)
s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P33,P36) s(P35,P36)
s(P34,P37) s(P35,P37)
s(P32,P38)
s(P32,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P37,P44) s(P38,P44)
s(P36,P45)
s(P36,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P37,P49) s(P45,P49)
s(P47,P50) s(P48,P50) s(P60,P50)
s(P43,P51) s(P57,P51)
s(P43,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P52,P54) s(P53,P54)
s(P53,P55) s(P54,P55)
s(P44,P56) s(P49,P56)
s(P42,P57) s(P44,P57)
s(P56,P58) s(P57,P58)
s(P56,P59) s(P58,P59)
s(P49,P60) s(P59,P60)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12)
pen(2)
color(red) s(P29,P59) abstand(P29,P59,A0) print(abs(P29,P59):,7.22,16.211) print(A0,8.16,16.211)
color(red) s(P31,P55) abstand(P31,P55,A1) print(abs(P31,P55):,7.22,15.994) print(A1,8.16,15.994)
color(red) s(P19,P31) abstand(P19,P31,A2) print(abs(P19,P31):,7.22,15.777) print(A2,8.16,15.777)
color(red) s(P21,P28) abstand(P21,P28,A3) print(abs(P21,P28):,7.22,15.561) print(A3,8.16,15.561)
print(min=0.9999999999999666,7.22,15.344)
print(max=1.010497213526297,7.22,15.127)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1326, vom Themenstarter, eingetragen 2018-08-20
Fast 4/4 mit 108.
\geo
ebene(551.64,482.02)
x(7.39,14.92)
y(9.2,15.78)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 108</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''6.7158502017340735''/>
#<Feinjustieren Anzahl=''1''/>
#<Rechenweg>
#P[1]=[-59.049911119284594,-58.784489746763484];
#P[2]=[14.197372430087487,-58.38995184251785]; D=ab(1,2); A(2,1,Bew(1));
#L(3,1,2); L(4,3,2);
#L(5,4,2); M(6,1,3,blauerWinkel,3); N(12,6,3); N(13,12,10); L(14,13,12);
#Q(15,11,13,ab(5,1,2,3,4),D); L(19,17,18); N(20,15,14); N(21,20,19);
#L(22,20,14); L(23,19,21); L(24,23,21); L(25,23,24); L(26,25,24); L(27,25,26);
#N(28,26,22);
#A(5,27,ab(27,5,[1,28]));
#RA(4,54); A(28,32);
#RA(22,54); A(28,49);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(9.193839666599095,9.197463248381142,P1)
p(10.193825160355209,9.202849552990195,P2)
p(9.689167736853191,10.066169241694388,P3)
p(10.689153230609305,10.07155554630344,P4)
p(11.193810654111322,9.208235857599247,P5)
p(9.584177721302618,10.118134852727811,P6)
p(8.591683696043665,9.995841721991527,P7)
p(8.982021750747188,10.916513326338196,P8)
p(7.9895277254882355,10.794220195601913,P9)
p(8.379865780191759,11.714891799948582,P10)
p(7.387371754932806,11.592598669212297,P11)
p(10.079505791556715,10.986840846041057,P12)
p(9.079598911075637,11.000487470773956,P13)
p(9.59137067501078,11.859608918322971,P14)
p(9.352882222643705,11.96242106079896,P15)
p(8.370126988788256,11.777509865005628,P16)
p(7.718611578859348,12.5361452653299,P17)
p(8.701366812714797,12.72105646112323,P18)
p(8.04985140278589,13.4796918614475,P19)
p(9.86465398657885,12.821542508347973,P20)
p(8.868132011487775,12.904872893926008,P21)
p(10.561071256510031,12.103905423087186,P22)
p(8.956799535587587,13.900934172246782,P23)
p(9.77508014428947,13.326115204725289,P24)
p(9.863747668389282,14.32217648304606,P25)
p(10.682028277091167,13.74735751552457,P26)
p(10.770695801190978,14.743418793845342,P27)
p(11.186685700593186,12.884037826820377,P28)
p(12.770666788703204,14.754191403063446,P29)
p(11.770681294947094,14.748805098454394,P30)
p(12.275338718449106,13.885485409750203,P31)
p(11.275353224692996,13.880099105141149,P32)
p(12.380328733999681,13.833519798716779,P33)
p(13.372822759258636,13.955812929453064,P34)
p(12.98248470455511,13.035141325106393,P35)
p(13.974978729814064,13.157434455842678,P36)
p(13.584640675110542,12.236762851496009,P37)
p(14.577134700369493,12.359055982232292,P38)
p(11.885000663745583,12.964813805403534,P39)
p(12.884907544226664,12.951167180670632,P40)
p(12.37313578029152,12.09204573312162,P41)
p(12.611624232658595,11.989233590645629,P42)
p(13.594379466514043,12.174144786438962,P43)
p(14.245894876442952,11.41550938611469,P44)
p(13.263139642587502,11.23059819032136,P45)
p(13.91465505251641,10.47196278999709,P46)
p(12.099852468723451,11.130112143096618,P47)
p(13.096374443814526,11.04678175751858,P48)
p(11.403435198792266,11.847749228357403,P49)
p(13.007706919714714,10.050720479197809,P50)
p(12.189426311012829,10.6255394467193,P51)
p(12.100758786913017,9.629478168398528,P52)
p(11.282478178211132,10.204297135920019,P53)
p(10.777820754709115,11.067616824624212,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4) s(P54,P4)
s(P4,P5) s(P2,P5) s(P52,P5) s(P53,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P6,P12) s(P3,P12)
s(P12,P13) s(P10,P13)
s(P13,P14) s(P12,P14)
s(P16,P15) s(P18,P15) s(P13,P15)
s(P11,P16)
s(P11,P17) s(P16,P17)
s(P16,P18) s(P17,P18)
s(P17,P19) s(P18,P19)
s(P15,P20) s(P14,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P14,P22) s(P54,P22)
s(P19,P23) s(P21,P23)
s(P23,P24) s(P21,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27) s(P30,P27) s(P32,P27)
s(P26,P28) s(P22,P28) s(P32,P28) s(P49,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P29,P33)
s(P29,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P31,P39) s(P33,P39)
s(P37,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P43,P42) s(P45,P42)
s(P38,P43)
s(P38,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P41,P47) s(P42,P47)
s(P46,P48) s(P47,P48)
s(P41,P49) s(P47,P49)
s(P46,P50) s(P48,P50)
s(P48,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P49,P54) s(P53,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
pen(2)
color(red) s(P4,P54) abstand(P4,P54,A0) print(abs(P4,P54):,7.39,15.778) print(A0,8.27,15.778)
color(red) s(P22,P54) abstand(P22,P54,A1) print(abs(P22,P54):,7.39,15.573) print(A1,8.27,15.573)
print(min=0.9999999999999959,7.39,15.369)
print(max=1.0587135610135117,7.39,15.164)
\geooff
\geoprint()
Misst man die andere Kante wird daraus ein Iota Graph und die vier Kanten lassen sich beliebig nahe der Länge 1 nähern. Daher kommen in den neuen Artikel nur starre Graphen, wie eben der obere. Hatten wir schon mal einen Iota 4/4 mit nur 2 falschen Kanten?
\geo
ebene(574.18,406.49)
x(7.63,15.47)
y(9.2,14.75)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 108 Iota</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''1.08''/>
#<Feinjustieren Anzahl=''1''/>
#<Rechenweg>
#P[1]=[-59.049911119284594,-58.784489746763484];
#P[2]=[14.197372430087487,-58.38995184251785]; D=ab(1,2); A(2,1,Bew(1));
#L(3,1,2); L(4,3,2);
#L(5,4,2); M(6,1,3,blauerWinkel,3); N(12,6,3); N(13,12,10); L(14,13,12);
#Q(15,11,13,ab(5,1,2,3,4),D); L(19,17,18); N(20,15,14); N(21,20,19);
#L(22,20,14); L(23,19,21); L(24,23,21); L(25,23,24); L(26,25,24); L(27,25,26);
#N(28,26,22);
#A(5,27,ab(27,5,[1,28]));
#
#RA(22,54); A(28,49);
#RA(4,54); A(28,32);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(9.193839666599095,9.197463248381142,P1)
p(10.193825160355209,9.202849552990195,P2)
p(9.689167736853191,10.066169241694388,P3)
p(10.689153230609305,10.07155554630344,P4)
p(11.193810654111322,9.208235857599247,P5)
p(9.672705990455414,10.075351079414432,P6)
p(8.672999665179203,10.051117565374225,P7)
p(9.151865989035523,10.929005396407517,P8)
p(8.152159663759313,10.904771882367308,P9)
p(8.631025987615631,11.7826597134006,P10)
p(7.631319662339422,11.758426199360391,P11)
p(10.168034060709514,10.944057072727677,P12)
p(9.168046394398958,10.939090461531928,P13)
p(9.663739016087998,11.807588489625859,P14)
p(9.630181154017077,11.825900172773695,P15)
p(8.63075040817825,11.792163186067043,P16)
p(8.101817947723738,12.64082710793337,P17)
p(9.101248693562564,12.674564094640022,P18)
p(8.572316233108053,13.523228016506348,P19)
p(10.12587377570613,12.694398200867617,P20)
p(9.1258816794764,12.69042233893984,P21)
p(10.662806134155169,11.85077290344562,P22)
p(9.570329829480736,13.586226916935356,P23)
p(10.123895275849083,12.753421239368848,P24)
p(10.568343425853417,13.649225817364364,P25)
p(11.121908872221764,12.816420139797856,P26)
p(11.5663570222261,13.71222471779337,P27)
p(11.655585061638062,11.970731234318954,P28)
p(13.566328009738324,13.722997327011477,P29)
p(12.566342515982214,13.717611022402425,P30)
p(13.07099993948423,12.85429133369823,P31)
p(12.071014445728117,12.848905029089178,P32)
p(13.087461685882007,12.845109495978187,P33)
p(14.087168011158216,12.869343010018394,P34)
p(13.6083016873019,11.991455178985102,P35)
p(14.60800801257811,12.01568869302531,P36)
p(14.12914168872179,11.13780086199202,P37)
p(15.128848013997999,11.162034376032228,P38)
p(12.592133615627908,11.976403502664942,P39)
p(13.592121281938462,11.98137011386069,P40)
p(13.096428660249423,11.11287208576676,P41)
p(13.129986522320344,11.094560402618924,P42)
p(14.129417268159171,11.128297389325576,P43)
p(14.658349728613684,10.279633467459249,P44)
p(13.658918982774857,10.245896480752597,P45)
p(14.18785144322937,9.39723255888627,P46)
p(12.63429390063129,10.226062374525002,P47)
p(13.63428599686102,10.23003823645278,P48)
p(12.09736154218225,11.069687671947,P49)
p(13.189837846856687,9.334233658457261,P50)
p(12.636272400488338,10.16703933602377,P51)
p(12.191824250484004,9.271234758028255,P52)
p(11.638258804115656,10.104040435594763,P53)
p(11.10458261469936,10.949729341073663,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4) s(P54,P4)
s(P4,P5) s(P2,P5) s(P52,P5) s(P53,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P6,P12) s(P3,P12)
s(P12,P13) s(P10,P13)
s(P13,P14) s(P12,P14)
s(P16,P15) s(P18,P15) s(P13,P15)
s(P11,P16)
s(P11,P17) s(P16,P17)
s(P16,P18) s(P17,P18)
s(P17,P19) s(P18,P19)
s(P15,P20) s(P14,P20)
s(P20,P21) s(P19,P21)
s(P20,P22) s(P14,P22) s(P54,P22)
s(P19,P23) s(P21,P23)
s(P23,P24) s(P21,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27) s(P30,P27) s(P32,P27)
s(P26,P28) s(P22,P28) s(P49,P28) s(P32,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P29,P33)
s(P29,P34) s(P33,P34)
s(P33,P35) s(P34,P35)
s(P34,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P31,P39) s(P33,P39)
s(P37,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P43,P42) s(P45,P42)
s(P38,P43)
s(P38,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P41,P47) s(P42,P47)
s(P46,P48) s(P47,P48)
s(P41,P49) s(P47,P49)
s(P46,P50) s(P48,P50)
s(P48,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P49,P54) s(P53,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
pen(2)
color(red) s(P22,P54) abstand(P22,P54,A0) print(abs(P22,P54):,7.63,14.747) print(A0,8.52,14.747)
color(red) s(P4,P54) abstand(P4,P54,A1) print(abs(P4,P54):,7.63,14.542) print(A1,8.52,14.542)
print(min=0.9714786600778097,7.63,14.337)
print(max=1.0035167960995752,7.63,14.133)
\geooff
\geoprint()
Man beachte, dass wegen der Symmetrie zu jeder gemessenen roten Kante ein gleichlanges Pendant existiert.
Nochmal genauer geschafft. Und wieder ein schönes Beispiel dafür, wie die Genauigkeit von der Art der Eingabe abhängt.
\geo
ebene(552.86,495.16)
x(7.4,14.65)
y(8.17,14.67)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 108</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''723.3649622982581''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''11507.216653469739''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''-6115.435338635804''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-198.30181337208163,-28.569364733774457];
#P[2]=[-146.11227420498767,-84.05362940878783]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4); M(7,1,3,blauerWinkel,3); N(13,7,6);
#M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle,2); N(25,13,18); N(26,13,25); N(27,25,18); N(28,23,27);
#RA(11,26); A(21,26);
#A(20,24,ab(24,20,[1,28]));
#RA(47,28); A(19,54);
#RA(27,54); A(28,53);
#R(21,26);
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(7.396674896606843,9.624938657218042,P1)
p(8.08182414026648,8.896535943115033,P2)
p(8.3700647730354,9.854093950559477,P3)
p(9.055214016695036,9.125691236456468,P4)
p(8.766973383926116,8.168133229012026,P5)
p(9.343454649463958,10.083249243900912,P6)
p(8.354936080050916,9.910832875950014,P7)
p(7.628213832111887,10.597764294907135,P8)
p(8.586475015555958,10.883658513639109,P9)
p(7.85975276761693,11.570589932596228,P10)
p(8.818013951061003,11.856484151328202,P11)
p(8.091291703121973,12.543415570285323,P12)
p(8.700561768142546,10.849205341302227,P13)
p(9.259943723856747,9.038179345001678,P14)
p(9.766940592802452,8.176231449314676,P15)
p(10.259910932733082,9.046277565304328,P16)
p(10.766907801678787,8.184329669617325,P17)
p(10.150588006161849,9.492880084386636,P18)
p(11.259878141609418,9.054375785606977,P19)
p(11.766875010555124,8.192427889919975,P20)
p(8.87037773237829,11.91649854306591,P21)
p(9.023760789387163,12.904665349745132,P22)
p(9.80284681864348,12.27774832252572,P23)
p(9.956229875652353,13.265915129204943,P24)
p(9.507695124840437,10.25883618178795,P25)
p(9.61540313624172,11.25301875268727,P26)
p(10.49247900403427,10.43261970022381,P27)
p(10.309843687589172,11.41580042683871,P28)
p(14.326429989600634,11.833404361906876,P29)
p(13.641280745940996,12.561807076009885,P30)
p(13.353040113172074,11.60424906856544,P31)
p(12.66789086951244,12.33265178266845,P32)
p(12.95613150228136,13.290209790112891,P33)
p(12.379650236743519,11.375093775224006,P34)
p(13.368168806156561,11.547510143174902,P35)
p(14.09489105409559,10.860578724217781,P36)
p(13.136629870651518,10.57468450548581,P37)
p(13.863352118590546,9.887753086528688,P38)
p(12.905090935146474,9.601858867796716,P39)
p(13.631813183085503,8.914927448839595,P40)
p(13.022543118064931,10.609137677822691,P41)
p(12.46316116235073,12.420163674123238,P42)
p(11.956164293405022,13.28211156981024,P43)
p(11.463193953474395,12.412065453820592,P44)
p(10.956197084528688,13.274013349507591,P45)
p(11.572516880045628,11.965462934738282,P46)
p(10.463226744598058,12.40396723351794,P47)
p(12.852727153829186,9.541844476059008,P48)
p(12.699344096820314,8.553677669379784,P49)
p(11.920258067563996,9.180594696599197,P50)
p(12.215409761367038,11.199506837336967,P51)
p(12.107701749965754,10.205324266437648,P52)
p(11.230625882173204,11.025723318901106,P53)
p(11.413261198618303,10.042542592286207,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11) s(P26,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19) s(P54,P19)
s(P19,P20) s(P17,P20) s(P49,P20) s(P50,P20)
s(P12,P21) s(P26,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24) s(P45,P24) s(P47,P24)
s(P13,P25) s(P18,P25)
s(P13,P26) s(P25,P26)
s(P25,P27) s(P18,P27) s(P54,P27)
s(P23,P28) s(P27,P28) s(P53,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P52,P39)
s(P38,P40) s(P39,P40)
s(P34,P41) s(P35,P41)
s(P33,P42)
s(P33,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P34,P46) s(P42,P46)
s(P44,P47) s(P45,P47) s(P28,P47)
s(P40,P48) s(P52,P48)
s(P40,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P41,P51) s(P46,P51)
s(P41,P52) s(P51,P52)
s(P46,P53) s(P51,P53)
s(P50,P54) s(P53,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) b(P12,MA12,MB12)
pen(2)
color(red) s(P11,P26) abstand(P11,P26,A0) print(abs(P11,P26):,7.4,14.669) print(A0,8.25,14.669)
color(red) s(P47,P28) abstand(P47,P28,A1) print(abs(P47,P28):,7.4,14.472) print(A1,8.25,14.472)
color(red) s(P27,P54) abstand(P27,P54,A2) print(abs(P27,P54):,7.4,14.275) print(A2,8.25,14.275)
color(red) s(P21,P26) abstand(P21,P26,A3) print(abs(P21,P26):,7.4,14.078) print(A3,8.25,14.078)
print(min=0.9976313370392654,7.4,13.881)
print(max=1.0000000000000147,7.4,13.684)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1327, vom Themenstarter, eingetragen 2018-08-20
Fast 4/4 mit 112.
\geo
ebene(573.3,502.5)
x(6.94,14.52)
y(8.76,15.4)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 112</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''8.637790554012431''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''2.9797297172722335''/>
#<Feinjustieren Anzahl=''2''/>
#<Rechenweg>
#P[1]=[-88.58356735265703,-94.0377736891347];
#P[2]=[-12.984079954350056,-93.47875366869187]; D=ab(1,2); A(2,1,Bew(1));
#L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3,gruenerWinkel,2);
#L(17,15,13); L(18,17,11); N(19,18,7); L(20,18,19); L(21,20,19); N(22,17,20);
#N(23,22,16);
#L(24,16,23); L(25,24,23); L(26,24,25); L(27,26,25); L(28,26,27); N(29,27,22);
#
#A(28,5,ab(5,28,[1,29]));
#
#RA(21,56); A(29,49);
#RA(29,34); A(56,6);
#RA(6,21); A(34,49);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.828283779563552,8.756139676260329,P1)
p(9.828256441407591,8.763533968961298,P2)
p(9.321866465163513,9.625838550857697,P3)
p(10.321839127007554,9.633232843558666,P4)
p(10.82822910325163,8.770928261662267,P5)
p(9.815449150763476,10.495537425455066,P6)
p(9.185650152956626,9.690103955645725,P7)
p(8.198130174085108,9.532610173769744,P8)
p(8.555496547478183,10.46657445315514,P9)
p(7.5679765686066665,10.309080671279158,P10)
p(7.92534294199974,11.243044950664554,P11)
p(6.937822963128224,11.085551168788573,P12)
p(7.9158208581068905,11.294165927176607,P13)
p(7.246156230249168,12.03682956988182,P14)
p(8.224154125227834,12.245444328269853,P15)
p(7.554489497370112,12.988107970975067,P16)
p(8.893818753085556,11.502780685564638,P17)
p(8.634518592236741,10.53418816276354,P18)
p(9.633260567267337,10.584332627183711,P19)
p(9.090463199705006,11.424196317175966,P20)
p(10.089205174735602,11.474340781596135,P21)
p(9.361146746421552,12.386864701167541,P22)
p(8.36119975260655,12.397160795589347,P23)
p(8.469619891167023,13.391265957810392,P24)
p(9.276330146403462,12.800318782424672,P25)
p(9.384750284963934,13.794423944645715,P26)
p(10.19146054020037,13.203476769259996,P27)
p(10.299880678760843,14.19758193148104,P28)
p(10.346362571730536,12.215546933376988,P29)
p(12.29982600244892,14.212370516882977,P30)
p(11.299853340604882,14.204976224182008,P31)
p(11.80624331684896,13.34267164228561,P32)
p(10.806270655004921,13.335277349584642,P33)
p(11.312660631248997,12.472972767688242,P34)
p(11.942459629055847,13.278406237497583,P35)
p(12.929979607927365,13.435900019373564,P36)
p(12.572613234534291,12.501935739988166,P37)
p(13.560133213405805,12.659429521864146,P38)
p(13.202766840012732,11.725465242478753,P39)
p(14.19028681888425,11.882959024354733,P40)
p(13.212288923905582,11.6743442659667,P41)
p(13.881953551763305,10.931680623261489,P42)
p(12.903955656784639,10.723065864873455,P43)
p(13.57362028464236,9.98040222216824,P44)
p(12.234291028926915,11.465729507578668,P45)
p(12.493591189775731,12.434322030379766,P46)
p(11.494849214745136,12.384177565959597,P47)
p(12.037646582307467,11.544313875967342,P48)
p(11.038904607276873,11.494169411547173,P49)
p(11.76696303559092,10.581645491975765,P50)
p(12.76691002940592,10.57134939755396,P51)
p(12.658489890845448,9.577244235332914,P52)
p(11.85177963560901,10.168191410718636,P53)
p(11.743359497048543,9.17408624849759,P54)
p(10.936649241812086,9.765033423883308,P55)
p(10.781747210281926,10.752963259766318,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P54,P5) s(P55,P5)
s(P3,P6) s(P4,P6) s(P21,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P12,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P15,P17) s(P13,P17)
s(P17,P18) s(P11,P18)
s(P18,P19) s(P7,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21) s(P56,P21)
s(P17,P22) s(P20,P22)
s(P22,P23) s(P16,P23)
s(P16,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26)
s(P26,P27) s(P25,P27)
s(P26,P28) s(P27,P28) s(P31,P28) s(P33,P28)
s(P27,P29) s(P22,P29) s(P49,P29) s(P34,P29)
s(P30,P31)
s(P30,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34) s(P49,P34)
s(P30,P35)
s(P30,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P41,P45) s(P43,P45)
s(P39,P46) s(P45,P46)
s(P35,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P45,P50) s(P48,P50)
s(P44,P51) s(P50,P51)
s(P44,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P52,P54) s(P53,P54)
s(P53,P55) s(P54,P55)
s(P50,P56) s(P55,P56) s(P6,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P7,MB11) f(P1,MA11,MB11)
pen(2)
color(red) s(P21,P56) abstand(P21,P56,A0) print(abs(P21,P56):,6.94,15.403) print(A0,7.8,15.403)
color(red) s(P29,P34) abstand(P29,P34,A1) print(abs(P29,P34):,6.94,15.204) print(A1,7.8,15.204)
color(red) s(P6,P21) abstand(P6,P21,A2) print(abs(P6,P21):,6.94,15.006) print(A2,7.8,15.006)
print(min=0.9999999999999838,6.94,14.808)
print(max=1.016365274226767,6.94,14.609)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1328, vom Themenstarter, eingetragen 2018-08-20
Fast 4/4 mit 112 genauer.
@Stefan: Ich habe hier eine Vorkonstruktion von dir übernommen mit der Winkeleingabe "M(7,1,3,blauerWinkel,3,gruenerWinkel,2);". Was passiert hier? Der blaue Winkel ist im Programm nicht zu sehen, sitzt aber bei P12.
\geo
ebene(569.16,508.81)
x(7.11,14.64)
y(8.36,15.09)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 112</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''4.4387316772844''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''3.5828427516843413''/>
#<Feinjustieren Anzahl=''2''/>
#<Rechenweg>
#P[1]=[-88.58356735265703,-124.0377736891347];
#P[2]=[-12.984079954350056,-123.47875366869187]; D=ab(1,2); A(2,1,Bew(1));
#L(3,1,2); L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3,gruenerWinkel,2);
#L(17,15,13); L(18,17,11); N(19,18,7); L(20,18,19); L(21,20,19); N(22,17,20);
#N(23,22,16);
#L(24,16,23); L(25,24,23); L(26,24,25); L(27,26,25); L(28,26,27); N(29,27,22);
#
#A(28,5,ab(5,28,[1,29]));
#
#RA(21,29); A(56,49);
#RA(29,34); A(56,6);
#RA(6,21); A(34,49);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.828283779563552,8.359322437311787,P1)
p(9.828256441407591,8.366716730012756,P2)
p(9.321866465163513,9.229021311909156,P3)
p(10.321839127007554,9.236415604610125,P4)
p(10.82822910325163,8.374111022713727,P5)
p(9.815449150763476,10.098720186506524,P6)
p(9.253077427457647,9.26461264310705,P7)
p(8.25667628749466,9.179849630651967,P8)
p(8.681469935388755,10.085139836447228,P9)
p(7.685068795425769,10.000376823992147,P10)
p(8.109862443319864,10.905667029787407,P11)
p(7.113461303356878,10.820904017332325,P12)
p(8.10261798256032,10.967768117735453,P13)
p(7.480851601105543,11.750970880047124,P14)
p(8.470008280308985,11.89783498045025,P15)
p(7.848241898854207,12.681037742761923,P16)
p(9.091774661763761,11.11463221813858,P17)
p(8.781787714160528,10.159788698504244,P18)
p(9.78074186413803,10.114065550726286,P19)
p(9.32086219666598,11.002046795711673,P20)
p(10.319816346643483,10.956323647933715,P21)
p(9.643776835894261,11.948474889003535,P22)
p(8.65359188253193,12.088238110685205,P23)
p(8.764296431425574,13.082091471525855,P24)
p(9.569646415103298,12.489291839449137,P25)
p(9.680350963996942,13.483145200289787,P26)
p(10.485700947674664,12.890345568213071,P27)
p(10.596405496568307,13.884198929053719,P28)
p(10.642730985871763,11.90275174122557,P29)
p(12.596350820256385,13.898987514455657,P30)
p(11.596378158412346,13.891593221754688,P31)
p(12.102768134656424,13.029288639858288,P32)
p(11.102795472812385,13.02189434715732,P33)
p(11.609185449056461,12.159589765260922,P34)
p(12.17155717236229,12.993697308660396,P35)
p(13.167958312325277,13.078460321115477,P36)
p(12.743164664431182,12.173170115320216,P37)
p(13.739565804394168,12.257933127775301,P38)
p(13.314772156500073,11.352642921980038,P39)
p(14.311173296463059,11.437405934435121,P40)
p(13.322016617259617,11.290541834031995,P41)
p(13.943782998714394,10.507339071720322,P42)
p(12.954626319510954,10.360474971317196,P43)
p(13.576392700965728,9.577272209005523,P44)
p(12.332859938056174,11.143677733628866,P45)
p(12.64284688565941,12.098521253263202,P46)
p(11.643892735681908,12.14424440104116,P47)
p(12.103772403153958,11.256263156055775,P48)
p(11.104818253176454,11.301986303833731,P49)
p(11.78085776392568,10.309835062763911,P50)
p(12.771042717288008,10.170071841082242,P51)
p(12.660338168394363,9.176218480241591,P52)
p(11.85498818471664,9.769018112318307,P53)
p(11.744283635822995,8.775164751477659,P54)
p(10.938933652145266,9.367964383554375,P55)
p(10.781903613948126,10.355558210541874,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P54,P5) s(P55,P5)
s(P3,P6) s(P4,P6) s(P21,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P12,P13)
s(P12,P14) s(P13,P14)
s(P14,P15) s(P13,P15)
s(P14,P16) s(P15,P16)
s(P15,P17) s(P13,P17)
s(P17,P18) s(P11,P18)
s(P18,P19) s(P7,P19)
s(P18,P20) s(P19,P20)
s(P20,P21) s(P19,P21) s(P29,P21)
s(P17,P22) s(P20,P22)
s(P22,P23) s(P16,P23)
s(P16,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26)
s(P26,P27) s(P25,P27)
s(P26,P28) s(P27,P28) s(P31,P28) s(P33,P28)
s(P27,P29) s(P22,P29) s(P34,P29)
s(P30,P31)
s(P30,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34) s(P49,P34)
s(P30,P35)
s(P30,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P40,P41)
s(P40,P42) s(P41,P42)
s(P41,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P41,P45) s(P43,P45)
s(P39,P46) s(P45,P46)
s(P35,P47) s(P46,P47)
s(P46,P48) s(P47,P48)
s(P47,P49) s(P48,P49)
s(P45,P50) s(P48,P50)
s(P44,P51) s(P50,P51)
s(P44,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P52,P54) s(P53,P54)
s(P53,P55) s(P54,P55)
s(P50,P56) s(P55,P56) s(P49,P56) s(P6,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P7,MB11) f(P1,MA11,MB11)
pen(2)
color(red) s(P21,P29) abstand(P21,P29,A0) print(abs(P21,P29):,7.11,15.089) print(A0,7.97,15.089)
color(red) s(P29,P34) abstand(P29,P34,A1) print(abs(P29,P34):,7.11,14.891) print(A1,7.97,14.891)
color(red) s(P6,P21) abstand(P6,P21,A2) print(abs(P6,P21):,7.11,14.693) print(A2,7.97,14.693)
print(min=0.9949220900813079,7.11,14.494)
print(max=1.0039014168094686,7.11,14.296)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1329, vom Themenstarter, eingetragen 2018-08-21
Mein heutiges Meisterstück. Ein fast 122er. So nah dran. Man beachte das regelmäßige Sechseck im Zentrum.
\geo
ebene(654.4,532.89)
x(6.52,15.11)
y(8.3,15.29)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 122</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''14051.880558418523''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''-10443.188856152796''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''5077.603777166142''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-213.37045423896058,197.0255845160214];
#P[2]=[-239.1137410865455,125.33503557626614]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,11,13); N(29,18,19);
#A(20,26,ab(26,20,[1,29]));
#N(57,49,55); N(58,21,28); N(59,27,57); N(60,54,58); N(61,58,59);
#
#RA(57,61);
#RA(60,61);
#RA(27,29); A(54,56);
#RA(28,59); A(55,60);
#RA(53,29); A(25,56);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(7.1988523433195475,12.586570649350831,P1)
p(6.860892020342468,11.6454102910201,P2)
p(7.844940961180285,11.82330824501612,P3)
p(7.506980638203205,10.882147886685392,P4)
p(6.522931697365388,10.70424993268937,P5)
p(8.491029579041022,11.060045840681411,P6)
p(7.988235500255851,11.972669817338629,P7)
p(8.12519763771467,12.963246100571126,P8)
p(8.914580794650973,12.349345268558924,P9)
p(9.051542932109792,13.339921551791424,P10)
p(9.840926089046096,12.726020719779221,P11)
p(9.977888226504914,13.71659700301172,P12)
p(8.987248162512014,11.928243466466027,P13)
p(7.515352923890168,10.827132434059791,P14)
p(7.1255616784951386,9.90622918994921,P15)
p(8.117982905019918,10.029111691319631,P16)
p(7.72819165962489,9.10820844720905,P17)
p(8.204070731475804,10.102102930167407,P18)
p(8.72061288614967,9.231090948579471,P19)
p(8.33082164075464,8.310187704468891,P20)
p(10.473827118813992,12.848239579426682,P21)
p(10.977877261048901,13.711913970683577,P22)
p(11.473816153357978,12.843556547098538,P23)
p(11.977866295592888,13.707230938355433,P24)
p(12.473805187901965,12.838873514770395,P25)
p(12.977855330136874,13.70254790602729,P26)
p(8.700289314946795,10.970300555952022,P27)
p(9.968232647944173,11.734157301731388,P28)
p(9.20406122264611,10.106463843943969,P29)
p(14.109824627571966,9.426164961145352,P30)
p(14.447784950549046,10.367325319476079,P31)
p(13.463736009711228,10.189427365480059,P32)
p(13.801696332688309,11.13058772381079,P33)
p(14.785745273526125,11.308485677806809,P34)
p(12.81764739185049,10.95268976981477,P35)
p(13.320441470635664,10.040065793157552,P36)
p(13.183479333176845,9.049489509925055,P37)
p(12.394096176240541,9.663390341937255,P38)
p(12.257134038781722,8.672814058704756,P39)
p(11.467750881845417,9.28671489071696,P40)
p(11.330788744386599,8.29613860748446,P41)
p(12.321428808379501,10.084492144030154,P42)
p(13.793324047001345,11.185603176436388,P43)
p(14.183115292396378,12.106506420546966,P44)
p(13.190694065871591,11.983623919176553,P45)
p(13.580485311266619,12.904527163287135,P46)
p(13.10460623941571,11.910632680328773,P47)
p(12.588064084741845,12.781644661916708,P48)
p(10.834849852077522,9.164496031069497,P49)
p(10.330799709842612,8.300821639812602,P50)
p(9.834860817533537,9.16917906339764,P51)
p(9.330810675298626,8.305504672140746,P52)
p(8.834871782989548,9.173862095725786,P53)
p(12.60838765594472,11.042435054544157,P54)
p(11.340444322947342,10.278578308764793,P55)
p(12.104615748245404,11.906271766552209,P56)
p(10.367283125874172,10.04845381091392,P57)
p(10.941393845017343,11.96428179958226,P58)
p(9.681232951925955,10.776008041762466,P59)
p(11.627444018965559,11.236727568733713,P60)
p(10.654338485445749,11.0063678052481,P61)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20) s(P52,P20) s(P53,P20)
s(P12,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25) s(P56,P25)
s(P24,P26) s(P25,P26) s(P46,P26) s(P48,P26)
s(P13,P27) s(P18,P27) s(P29,P27)
s(P11,P28) s(P13,P28) s(P59,P28)
s(P18,P29) s(P19,P29)
s(P30,P31)
s(P30,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P31,P34) s(P33,P34)
s(P32,P35) s(P33,P35)
s(P30,P36)
s(P30,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P35,P42) s(P36,P42)
s(P34,P43)
s(P34,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P35,P47) s(P43,P47)
s(P45,P48) s(P46,P48)
s(P41,P49)
s(P41,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P51,P53) s(P52,P53) s(P29,P53)
s(P42,P54) s(P47,P54) s(P56,P54)
s(P40,P55) s(P42,P55) s(P60,P55)
s(P47,P56) s(P48,P56)
s(P49,P57) s(P55,P57) s(P61,P57)
s(P21,P58) s(P28,P58)
s(P27,P59) s(P57,P59)
s(P54,P60) s(P58,P60) s(P61,P60)
s(P58,P61) s(P59,P61)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) b(P12,MA12,MB12)
pen(2)
color(red) s(P57,P61) abstand(P57,P61,A0) print(abs(P57,P61):,6.52,15.292) print(A0,7.38,15.292)
color(red) s(P60,P61) abstand(P60,P61,A1) print(abs(P60,P61):,6.52,15.095) print(A1,7.38,15.095)
color(red) s(P27,P29) abstand(P27,P29,A2) print(abs(P27,P29):,6.52,14.898) print(A2,7.38,14.898)
color(red) s(P28,P59) abstand(P28,P59,A3) print(abs(P28,P59):,6.52,14.701) print(A3,7.38,14.701)
color(red) s(P53,P29) abstand(P53,P29,A4) print(abs(P53,P29):,6.52,14.504) print(A4,7.38,14.504)
print(min=0.999999999999944,6.52,14.307)
print(max=1.0030188747643491,6.52,14.11)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1330, vom Themenstarter, eingetragen 2018-08-21
Vielleicht schafft es einer von euch diesen knappen 124er zurechtzubiegen.
\geo
ebene(600.63,602.87)
x(6.53,14.41)
y(7.59,15.5)
form(.)
\geo
ebene(597.68,606.35)
x(6.53,14.38)
y(7.56,15.52)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 124</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''23775.89''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''33112.62''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''5052.3''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-264.40126106967676,118.34596965922657];
#P[2]=[-254.79186946516586,42.78201517038511]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4); M(7,1,3,blauerWinkel,3); N(13,7,6);
#M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#N(21,19,20); N(22,21,20);
#M(23,12,11,orange_angle,2); N(27,13,18); N(28,13,27); N(29,27,18); N(30,23,11);
#A(22,26,ab(22,26,[1,30],''gespiegelt''));
#N(59,21,51); N(60,54,25); N(61,29,57); N(62,28,56);
#
#RA(29,59); A(59,57);
#RA(28,61); A(61,56);
#RA(30,62); A(62,58);
#RA(30,60); A(60,58);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(6.528915048194887,11.553657167628531,P1)
p(6.6550680569191165,10.561646372127885,P2)
p(7.451098102288971,11.166903480197231,P3)
p(7.577251111013201,10.174892684696584,P4)
p(6.781221065643345,9.569635576627238,P5)
p(8.373281156383054,10.780149792765929,P6)
p(7.5217504845477094,11.434167434504293,P7)
p(7.1288139107483115,12.353733010725364,P8)
p(8.121649347101133,12.234243277601127,P9)
p(7.728712773301735,13.153808853822197,P10)
p(8.721548209654557,13.034319120697958,P11)
p(8.32861163585516,13.95388469691903,P12)
p(8.461417389660175,11.776258222799388,P13)
p(7.648401776623353,10.067629165445618,P14)
p(7.646086519971847,9.06763184565589,P15)
p(8.513267230951856,9.565625434474269,P16)
p(8.51095197430035,8.565628114684543,P17)
p(8.614564278225654,9.809695025600613,P18)
p(9.378132685280356,9.063621703502921,P19)
p(9.375817428628851,8.063624383713194,P20)
p(10.242998139608858,8.561617972531574,P21)
p(10.240682882957353,7.561620652741846,P22)
p(8.908423986227167,13.139134650367275,P23)
p(9.324112049089537,14.048641898493276,P24)
p(9.903924399461545,13.233891851941518,P25)
p(10.319612462323915,14.14339910006752,P26)
p(8.702700511502774,10.805803455634072,P27)
p(9.422497432170351,11.499988152236837,P28)
p(9.521287600197024,10.231421023605485,P29)
p(9.301360560026563,12.219569074146202,P30)
p(14.047115601504032,11.463497887425586,P31)
p(13.897209637310437,10.474797628550737,P32)
p(13.115923078493367,11.098970131158616,P33)
p(12.96601711429977,10.11026987228377,P34)
p(13.747303673116843,9.48609736967589,P35)
p(12.184730555482702,10.734442374891644,P36)
p(13.051700223960562,11.367851527588977,P37)
p(13.466575735334288,12.277729711777603,P38)
p(12.47116035779082,12.182083351940992,P39)
p(12.886035869164543,13.09196153612962,P40)
p(11.890620491621075,12.99631517629301,P41)
p(12.305496002994795,13.906193360481637,P42)
p(12.120507167893999,11.732377922152404,P43)
p(12.892314642882766,10.00474345148833,P44)
p(12.87064847557697,9.00497819044238,P45)
p(12.015659445342894,9.52362427225482,P46)
p(11.993993278037099,8.523859011208868,P47)
p(11.92024451872254,9.770052860038387,P48)
p(11.139004247803022,9.042505093021308,P49)
p(11.117338080497225,8.042739831975357,P50)
p(10.262349050263127,8.561385913787797,P51)
p(11.706312019624653,13.10558199778892,P52)
p(11.312554232659354,14.02479623027458,P53)
p(10.713370249289207,13.224184867581863,P54)
p(11.85602113113384,10.767988407299146,P55)
p(11.153078330507643,11.479234791506338,P56)
p(11.023895289660846,10.213401548499856,P57)
p(11.291436508250932,12.195703813600295,P58)
p(10.26466430691464,9.561383233577523,P59)
p(10.297682186426838,12.314677619455862,P60)
p(10.280504425770534,10.882258800448595,P61)
p(10.293797468776381,11.990738848833727,P62)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22) s(P50,P22) s(P51,P22)
s(P12,P23)
s(P12,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P53,P26) s(P54,P26)
s(P13,P27) s(P18,P27)
s(P13,P28) s(P27,P28) s(P61,P28)
s(P27,P29) s(P18,P29) s(P59,P29)
s(P23,P30) s(P11,P30) s(P62,P30) s(P60,P30)
s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P32,P35) s(P34,P35)
s(P33,P36) s(P34,P36)
s(P31,P37)
s(P31,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40)
s(P39,P41) s(P40,P41)
s(P40,P42) s(P41,P42)
s(P36,P43) s(P37,P43)
s(P35,P44)
s(P35,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P45,P47) s(P46,P47)
s(P36,P48) s(P44,P48)
s(P46,P49) s(P47,P49)
s(P47,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P42,P52)
s(P42,P53) s(P52,P53)
s(P52,P54) s(P53,P54)
s(P43,P55) s(P48,P55)
s(P43,P56) s(P55,P56)
s(P48,P57) s(P55,P57)
s(P41,P58) s(P52,P58)
s(P21,P59) s(P51,P59) s(P57,P59)
s(P54,P60) s(P25,P60) s(P58,P60)
s(P29,P61) s(P57,P61) s(P56,P61)
s(P28,P62) s(P56,P62) s(P58,P62)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P23,MB12) b(P12,MA12,MB12)
pen(2)
color(red) s(P29,P59) abstand(P29,P59,A0) print(abs(P29,P59):,6.53,15.522) print(A0,7.38,15.522)
color(red) s(P28,P61) abstand(P28,P61,A1) print(abs(P28,P61):,6.53,15.325) print(A1,7.38,15.325)
color(red) s(P30,P62) abstand(P30,P62,A2) print(abs(P30,P62):,6.53,15.128) print(A2,7.38,15.128)
color(red) s(P30,P60) abstand(P30,P60,A3) print(abs(P30,P60):,6.53,14.931) print(A3,7.38,14.931)
print(min=0.9999999999999973,6.53,14.734)
print(max=1.0572443204517803,6.53,14.537)
\geooff
\geoprint()
Es ist schon ein wenig frustrierend, dass die beiden letzten so knapp gescheitert sind. Es wären die ersten 4/4 mit 122 und 124 Kanten. ☹️
Fehlende 4/4 > 104 hatten wir jetzt schon knappe 110, 112, 116, 122 und 124. 106 und 118 sind wohl besonders schwierige Graphen. 😉 -----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1331, vom Themenstarter, eingetragen 2018-08-21
So, hier meine Idee für einen 118er.
\geo
ebene(649.84,509.32)
x(6.59,15.12)
y(7.96,14.64)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 118</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''722.7827239054413''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''1793.14''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''3604.181115337338''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-259.87641381014106,-29.403185542652558];
#P[2]=[-214.83771845916925,-90.8341837933965]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4); M(7,1,3,blauerWinkel,3); N(13,7,6);
#M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#N(21,19,20); N(22,21,20);
#M(23,12,11,orange_angle,2); N(27,13,18); N(28,13,27); N(29,27,18);
#RA(11,28);
#A(22,26,ab(26,22,[1,29]));
#N(57,50,25); N(58,21,53); N(59,57,58);
#RA(57,29);
#RA(59,56);
#RA(59,29);
#RA(56,58);
#RA(23,28); A(51,55);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(6.588317674219626,9.613992178178988,P1)
p(7.1795899588117,8.80752017899162,P2)
p(7.582379055252747,9.722812997595701,P3)
p(8.17365133984482,8.916340998408334,P4)
p(7.770862243403774,8.00104817980425,P5)
p(8.576440436285868,9.831633817012415,P6)
p(7.575923780554943,9.770944969581995,P7)
p(6.946195622837401,10.547760550899511,P8)
p(7.933801729172716,10.704713342302519,P9)
p(7.304073571455174,11.481528923620033,P10)
p(8.291679677790489,11.63848171502304,P11)
p(7.661951520072947,12.415297296340556,P12)
p(8.023788774826787,10.665046164585045,P13)
p(8.280093753334782,8.861677757086712,P14)
p(8.770805075544152,7.990355544437721,P15)
p(9.280036585475159,8.85098512172018,P16)
p(9.770747907684528,7.979662909071189,P17)
p(9.252536350180575,9.094820193892646,P18)
p(10.279979417615536,8.84029248635365,P19)
p(10.770690739824905,7.9689702737046595,P20)
p(11.279922249755913,8.829599850987119,P21)
p(11.770633571965282,7.958277638338128,P22)
p(8.346640914675747,11.68646231301549,P23)
p(8.635485828100663,12.643838214105838,P24)
p(9.320175222703464,11.915003230780771,P25)
p(9.609020136128377,12.872379131871117,P26)
p(8.699884688721493,9.928232541465274,P27)
p(8.999936047250316,10.88215558985283,P28)
p(9.697966784276556,9.990136745946202,P29)
p(14.791336033874035,11.21666459203026,P30)
p(14.200063749281963,12.023136591217627,P31)
p(13.797274652840914,11.107843772613545,P32)
p(13.20600236824884,11.914315771800913,P33)
p(13.608791464689885,12.829608590404996,P34)
p(12.803213271807794,10.999022953196832,P35)
p(13.803729927538718,11.059711800627252,P36)
p(14.43345808525626,10.282896219309736,P37)
p(13.445851978920945,10.125943427906728,P38)
p(14.075580136638486,9.349127846589212,P39)
p(13.08797403030317,9.192175055186205,P40)
p(13.717702188020713,8.41535947386869,P41)
p(13.355864933266872,10.165610605624204,P42)
p(13.099559954758877,11.968979013122535,P43)
p(12.608848632549506,12.840301225771526,P44)
p(12.099617122618502,11.979671648489067,P45)
p(11.608905800409131,12.850993861138056,P46)
p(12.127117357913084,11.735836576316599,P47)
p(11.099674290478125,11.990364283855596,P48)
p(10.608962968268754,12.861686496504586,P49)
p(10.099731458337697,12.001056919222107,P50)
p(13.033012793417912,9.144194457193755,P51)
p(12.744167879992998,8.18681855610341,P52)
p(12.059478485390196,8.915653539428476,P53)
p(12.679769019372166,10.902424228743973,P54)
p(12.379717660843346,9.948501180356416,P55)
p(11.681686923817105,10.840520024263043,P56)
p(9.81088654491279,11.043681018131757,P57)
p(11.568767163180828,9.786975752077465,P58)
p(10.689826854046808,10.415328385104612,P59)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11) s(P28,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22) s(P52,P22) s(P53,P22)
s(P12,P23) s(P28,P23)
s(P12,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P49,P26) s(P50,P26)
s(P13,P27) s(P18,P27)
s(P13,P28) s(P27,P28)
s(P27,P29) s(P18,P29)
s(P30,P31)
s(P30,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P31,P34) s(P33,P34)
s(P32,P35) s(P33,P35)
s(P30,P36)
s(P30,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40) s(P55,P40)
s(P39,P41) s(P40,P41)
s(P35,P42) s(P36,P42)
s(P34,P43)
s(P34,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P35,P47) s(P43,P47)
s(P45,P48) s(P46,P48)
s(P46,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P41,P51) s(P55,P51)
s(P41,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P42,P54) s(P47,P54)
s(P42,P55) s(P54,P55)
s(P47,P56) s(P54,P56) s(P58,P56)
s(P50,P57) s(P25,P57) s(P29,P57)
s(P21,P58) s(P53,P58)
s(P57,P59) s(P58,P59) s(P56,P59) s(P29,P59)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P23,MB12) b(P12,MA12,MB12)
pen(2)
color(red) s(P11,P28) abstand(P11,P28,A0) print(abs(P11,P28):,6.59,14.645) print(A0,7.44,14.645)
color(red) s(P57,P29) abstand(P57,P29,A1) print(abs(P57,P29):,6.59,14.448) print(A1,7.44,14.448)
color(red) s(P59,P56) abstand(P59,P56,A2) print(abs(P59,P56):,6.59,14.251) print(A2,7.44,14.251)
color(red) s(P59,P29) abstand(P59,P29,A3) print(abs(P59,P29):,6.59,14.054) print(A3,7.44,14.054)
color(red) s(P56,P58) abstand(P56,P58,A4) print(abs(P56,P58):,6.59,13.857) print(A4,7.44,13.857)
color(red) s(P23,P28) abstand(P23,P28,A5) print(abs(P23,P28):,6.59,13.66) print(A5,7.44,13.66)
print(min=0.9999999999999937,6.59,13.463)
print(max=1.0804457869105468,6.59,13.266)
\geooff
\geoprint()
Bis auf vier Kanten gehts.
\geo
ebene(642.84,516.69)
x(6.6,15.03)
y(7.96,14.75)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 118</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''722.7827239054415''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''1790.0370164201702''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''3604.181115337338''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-259.3388211084955,-33.35471214406857];
#P[2]=[-211.14679968779018,-92.34437815759028]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4); M(7,1,3,blauerWinkel,3); N(13,7,6);
#M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#N(21,19,20); N(22,21,20);
#M(23,12,11,orange_angle,2); N(27,13,18); N(28,13,27); N(29,27,18);
#RA(11,28);
#A(22,26,ab(26,22,[1,29]));
#N(57,50,25); N(58,21,53); N(59,57,58);
#RA(57,29);
#RA(59,56);
#RA(59,29);
#RA(56,58);
#RA(23,28); A(51,55);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(6.595375242437468,9.562116160389428,P1)
p(7.228044692173555,8.787694203462431,P2)
p(7.582379055252748,9.722812997595701,P3)
p(8.215048504988834,8.948391040668707,P4)
p(7.860714141909641,8.013272246535436,P5)
p(8.569382868068027,9.883509834801977,P6)
p(7.573413594504804,9.770541163413077,P7)
p(6.903893071068806,10.513334720667034,P8)
p(7.881931423136143,10.721759723690685,P9)
p(7.212410899700145,11.46455328094464,P10)
p(8.19044925176748,11.672978283968291,P11)
p(7.520928728331483,12.415771841222249,P12)
p(7.973871164348916,10.686856466545438,P13)
p(8.3714917262233,8.872985140100898,P14)
p(8.860636139855188,8.00078232961889,P15)
p(9.37141372416885,8.860495223184351,P16)
p(9.860558137800737,7.988292412702341,P17)
p(9.31173207182451,9.213496656064338,P18)
p(10.371335722114399,8.848005306267805,P19)
p(10.860480135746286,7.9758024957857945,P20)
p(11.371257720059948,8.835515389351258,P21)
p(11.860402133691835,7.963312578869247,P22)
p(8.242824055710706,11.72376957510743,P23)
p(8.481167933952927,12.694950400548532,P24)
p(9.20306326133215,12.002948134433712,P25)
p(9.44140713957437,12.974128959874815,P26)
p(8.7162203681054,10.016843287807799,P27)
p(8.925294199884316,10.994743146108883,P28)
p(9.709694811099453,10.13089823560777,P29)
p(14.706434030828735,11.375325378354635,P30)
p(14.07376458109265,12.149747335281631,P31)
p(13.719430218013455,11.21462854114836,P32)
p(13.08676076827737,11.989050498075354,P33)
p(13.441095131356564,12.924169292208626,P34)
p(12.732426405198176,11.053931703942085,P35)
p(13.7283956787614,11.166900375330984,P36)
p(14.397916202197399,10.424106818077028,P37)
p(13.419877850130062,10.215681815053378,P38)
p(14.089398373566059,9.47288825779942,P39)
p(13.111360021498724,9.264463254775771,P40)
p(13.780880544934723,8.521669697521814,P41)
p(13.327938108917289,10.250585072198625,P42)
p(12.930317547042902,12.064456398643165,P43)
p(12.441173133411011,12.936659209125175,P44)
p(11.930395549097351,12.07694631555971,P45)
p(11.441251135465466,12.949149126041721,P46)
p(11.990077201441695,11.723944882679723,P47)
p(10.930473551151804,12.089436232476256,P48)
p(10.441329137519924,12.961639042958268,P49)
p(9.93055155320624,12.101926149392796,P50)
p(13.058985217555499,9.213671963636632,P51)
p(12.82064133931328,8.24249113819553,P52)
p(12.098746011934054,8.934493404310349,P53)
p(12.585588905160805,10.920598250936262,P54)
p(12.376515073381888,9.942698392635178,P55)
p(11.59211446216675,10.806543303136293,P56)
p(9.69220767496402,11.130745323951693,P57)
p(11.609601598302167,9.806696214792359,P58)
p(10.650904636633094,10.468720769372027,P59)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11) s(P28,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22) s(P52,P22) s(P53,P22)
s(P12,P23) s(P28,P23)
s(P12,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P49,P26) s(P50,P26)
s(P13,P27) s(P18,P27)
s(P13,P28) s(P27,P28)
s(P27,P29) s(P18,P29)
s(P30,P31)
s(P30,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P31,P34) s(P33,P34)
s(P32,P35) s(P33,P35)
s(P30,P36)
s(P30,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39)
s(P38,P40) s(P39,P40) s(P55,P40)
s(P39,P41) s(P40,P41)
s(P35,P42) s(P36,P42)
s(P34,P43)
s(P34,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P44,P46) s(P45,P46)
s(P35,P47) s(P43,P47)
s(P45,P48) s(P46,P48)
s(P46,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P41,P51) s(P55,P51)
s(P41,P52) s(P51,P52)
s(P51,P53) s(P52,P53)
s(P42,P54) s(P47,P54)
s(P42,P55) s(P54,P55)
s(P47,P56) s(P54,P56) s(P58,P56)
s(P50,P57) s(P25,P57) s(P29,P57)
s(P21,P58) s(P53,P58)
s(P57,P59) s(P58,P59) s(P56,P59) s(P29,P59)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) b(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P23,MB12) b(P12,MA12,MB12)
pen(2)
color(red) s(P11,P28) abstand(P11,P28,A0) print(abs(P11,P28):,6.6,14.746) print(A0,7.45,14.746)
color(red) s(P57,P29) abstand(P57,P29,A1) print(abs(P57,P29):,6.6,14.55) print(A1,7.45,14.55)
color(red) s(P59,P56) abstand(P59,P56,A2) print(abs(P59,P56):,6.6,14.353) print(A2,7.45,14.353)
color(red) s(P59,P29) abstand(P59,P29,A3) print(abs(P59,P29):,6.6,14.156) print(A3,7.45,14.156)
color(red) s(P56,P58) abstand(P56,P58,A4) print(abs(P56,P58):,6.6,13.959) print(A4,7.45,13.959)
color(red) s(P23,P28) abstand(P23,P28,A5) print(abs(P23,P28):,6.6,13.762) print(A5,7.45,13.762)
print(min=0.9986215658930669,6.6,13.565)
print(max=1.1650649660769647,6.6,13.368)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1332, vom Themenstarter, eingetragen 2018-08-21
Fast 124er. Eine flexible Raute im Zentrum, aber zwei Kanten wollen nicht 1 werden. Ich will es manchmal einfach nicht glauben.
\geo
ebene(551.54,524.84)
x(7.3,15.26)
y(7.85,15.42)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>4/4 fast mit 124</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''4.467115288559775''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''-7580.465170520223''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''19.80760152834092''/>
#<Feinjustieren Anzahl=''3''/>
#<Rechenweg>
#P[1]=[-187.04177877067625,137.8801232136349];
#P[2]=[-180.7086934595204,68.92259057722578]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); M(14,5,4,gruenerWinkel);
#L(15,14,5); L(16,14,15); L(17,16,15); N(18,6,14); N(19,16,17); N(20,19,17);
#M(21,12,11,orange_angle);
#N(22,12,21); N(23,22,21); N(24,22,23); N(25,24,23); N(26,24,25); N(27,13,18);
#N(28,13,27);
#A(20,26,ab(26,20,[1,28]));
#N(55,19,52); N(56,47,25); N(57,21,28); N(58,48,54);
#N(59,27,18); N(60,53,46); N(61,59,58); N(62,60,57);
#
#RA(28,11); A(39,54);
#RA(55,58); A(56,62);
#RA(61,55); A(57,56);
#RA(59,62); A(60,61);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(7.298947474284015,11.991113736727394,P1)
p(7.390402956517454,10.995304570888152,P2)
p(8.20707125033891,11.572411924737287,P3)
p(8.298526732572348,10.576602758898044,P4)
p(7.481858438750892,9.999495405048908,P5)
p(9.115195026393804,11.153710112747179,P6)
p(8.236923941226314,11.644414807593712,P7)
p(8.068185787849794,12.630075720684559,P8)
p(9.006162254792093,12.283376791550879,P9)
p(8.837424101415571,13.269037704641724,P10)
p(9.775400568357872,12.922338775508043,P11)
p(9.60666241498135,13.907999688598888,P12)
p(9.097607286027456,12.153555436479209,P13)
p(8.448761251330104,10.254640365858265,P14)
p(8.186271862748985,9.289705486769364,P15)
p(9.153174675328199,9.54485044757872,P16)
p(8.890685286747079,8.579915568489819,P17)
p(9.447792825408387,10.210641343202425,P18)
p(9.857588099326293,8.835060529299176,P19)
p(9.595098710745173,7.870125650210275,P20)
p(10.099421076989092,13.037833669372478,P21)
p(10.606627624145272,13.899658198219218,P22)
p(11.099386286153013,13.029492178992806,P23)
p(11.606592833309193,13.891316707839547,P24)
p(12.099351495316935,13.021150688613135,P25)
p(12.606558042473116,13.882975217459874,P26)
p(9.43020508504204,11.210486666934456,P27)
p(10.080627697476237,11.970059194896251,P28)
p(14.902709278934273,9.761987130942757,P29)
p(14.811253796700836,10.757796296781997,P30)
p(13.994585502879378,10.180688942932862,P31)
p(13.90313002064594,11.176498108772105,P32)
p(14.719798314467397,11.753605462621241,P33)
p(13.086461726824483,10.599390754922972,P34)
p(13.964732811991976,10.108686060076435,P35)
p(14.133470965368494,9.12302514698559,P36)
p(13.195494498426195,9.469724076119272,P37)
p(13.364232651802716,8.484063163028425,P38)
p(12.426256184860417,8.830762092162107,P39)
p(12.594994338236937,7.845101179071261,P40)
p(13.104049467190832,9.599545431190942,P41)
p(13.752895501888185,11.498460501811884,P42)
p(14.015384890469301,12.463395380900788,P43)
p(13.048482077890085,12.208250420091431,P44)
p(13.310971466471212,13.173185299180327,P45)
p(12.753863927809906,11.542459524467722,P46)
p(12.344068653891991,12.918040338370977,P47)
p(12.102235676229196,8.715267198297672,P48)
p(11.595029129073016,7.853442669450931,P49)
p(11.102270467065274,8.723608688677343,P50)
p(10.595063919909094,7.861784159830604,P51)
p(10.102305257901353,8.731950179057016,P52)
p(12.77145166817625,10.542614200735695,P53)
p(12.121029055742053,9.783041672773898,P54)
p(10.364794646482471,9.696885058145915,P55)
p(11.836862106735815,12.056215809524234,P56)
p(10.935396929817516,12.489067440921975,P57)
p(11.266259823400771,9.264033426748174,P58)
p(10.304890405432227,10.725795435020864,P59)
p(11.896766347786063,11.027305432649289,P60)
p(11.190387743801596,10.26115098628531,P61)
p(11.011269009416694,11.491949881384839,P62)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12)
s(P7,P13) s(P6,P13)
s(P5,P14)
s(P14,P15) s(P5,P15)
s(P14,P16) s(P15,P16)
s(P16,P17) s(P15,P17)
s(P6,P18) s(P14,P18)
s(P16,P19) s(P17,P19)
s(P19,P20) s(P17,P20) s(P51,P20) s(P52,P20)
s(P12,P21)
s(P12,P22) s(P21,P22)
s(P22,P23) s(P21,P23)
s(P22,P24) s(P23,P24)
s(P24,P25) s(P23,P25)
s(P24,P26) s(P25,P26) s(P45,P26) s(P47,P26)
s(P13,P27) s(P18,P27)
s(P13,P28) s(P27,P28) s(P11,P28)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P30,P33) s(P32,P33)
s(P31,P34) s(P32,P34)
s(P29,P35)
s(P29,P36) s(P35,P36)
s(P35,P37) s(P36,P37)
s(P36,P38) s(P37,P38)
s(P37,P39) s(P38,P39) s(P54,P39)
s(P38,P40) s(P39,P40)
s(P34,P41) s(P35,P41)
s(P33,P42)
s(P33,P43) s(P42,P43)
s(P42,P44) s(P43,P44)
s(P43,P45) s(P44,P45)
s(P34,P46) s(P42,P46)
s(P44,P47) s(P45,P47)
s(P40,P48)
s(P40,P49) s(P48,P49)
s(P48,P50) s(P49,P50)
s(P49,P51) s(P50,P51)
s(P50,P52) s(P51,P52)
s(P41,P53) s(P46,P53)
s(P41,P54) s(P53,P54)
s(P19,P55) s(P52,P55) s(P58,P55)
s(P47,P56) s(P25,P56) s(P62,P56)
s(P21,P57) s(P28,P57) s(P56,P57)
s(P48,P58) s(P54,P58)
s(P27,P59) s(P18,P59) s(P62,P59)
s(P53,P60) s(P46,P60) s(P61,P60)
s(P59,P61) s(P58,P61) s(P55,P61)
s(P60,P62) s(P57,P62)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P14,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P11,P12,MA12) m(P12,P21,MB12) f(P12,MA12,MB12)
pen(2)
color(red) s(P28,P11) abstand(P28,P11,A0) print(abs(P28,P11):,7.3,15.424) print(A0,8.24,15.424)
color(red) s(P55,P58) abstand(P55,P58,A1) print(abs(P55,P58):,7.3,15.208) print(A1,8.24,15.208)
color(red) s(P61,P55) abstand(P61,P55,A2) print(abs(P61,P55):,7.3,14.991) print(A2,8.24,14.991)
color(red) s(P59,P62) abstand(P59,P62,A3) print(abs(P59,P62):,7.3,14.774) print(A3,8.24,14.774)
print(min=0.9999999999999925,7.3,14.558)
print(max=1.0420956615639183,7.3,14.341)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1333, vom Themenstarter, eingetragen 2018-08-23
Fast 4/5 mit 99. Fünf Kanten falsch.
\geo
ebene(484.08,578.96)
x(7.72,13.5)
y(8.69,15.6)
form(.)
\geo
ebene(484.03,578.53)
x(7.73,13.5)
y(8.69,15.6)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/5 mit 99</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''3.3729580974735227''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''-31.825023719087817''/>
#<Feinjustieren Anzahl=''2''/>
#<Rechenweg>
#P[1]=[-81.21204408523124,334.03644145650696];
#P[2]=[-127.76637026028435,264.36995610926937]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2); L(6,3,4);
#M(7,1,3,blauerWinkel,3); N(13,7,6); N(14,11,13);
#M(15,5,4,gruenerWinkel); L(16,15,5); L(17,15,16); L(18,17,16); N(19,6,15);
#Q(20,12,14,ab(4,5,[1,3]),D);
#A(18,21,ab(21,18,[1,23])); N(45,17,44); N(46,13,19); N(47,36,41); N(48,40,23);
#N(49,46,19); A(37,47);
#
#RA(48,49);
#RA(45,49);
#RA(14,46);
#RA(45,47);
#RA(46,48);
#RA(40,41);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(9.03076413275948,13.98660203264003,P1)
p(8.47515537777333,13.15515816118343,P2)
p(9.473011269768705,13.089708800528681,P3)
p(8.917402514782555,12.25826492907208,P4)
p(7.9195466227871805,12.32371428972683,P5)
p(9.915258406777928,12.19281556841733,P6)
p(9.52501408576329,13.117282192790663,P7)
p(10.030742174584757,13.97997512783591,P8)
p(10.524992127588568,13.110655287986543,P9)
p(11.030720216410035,13.973348223031792,P10)
p(11.524970169413844,13.104028383182424,P11)
p(12.03069825823531,13.966721318227671,P12)
p(10.517066432022487,12.991456351718087,P13)
p(11.116687948502854,12.191172628921112,P14)
p(8.732874110039567,11.741908137748595,P15)
p(7.822351458722153,11.328448948180982,P16)
p(8.63567894597454,10.746642796202748,P17)
p(7.7251562946571255,10.333183606635135,P18)
p(9.599995466736086,11.243811206659087,P19)
p(11.622416037324328,13.053865563966356,P20)
p(13.203528583686534,12.346700013521474,P21)
p(12.617113420960923,13.156710665874574,P22)
p(12.20883120004994,12.243854911613258,P23)
p(11.89792074558418,8.693281587516578,P24)
p(12.45352950057033,9.52472545897318,P25)
p(11.455673608574955,9.590174819627926,P26)
p(12.011282363561104,10.421618691084527,P27)
p(13.00913825555648,10.356169330429777,P28)
p(11.013426471565731,10.487068051739277,P29)
p(11.403670792580371,9.562601427365946,P30)
p(10.897942703758902,8.699908492320697,P31)
p(10.403692750755093,9.569228332170066,P32)
p(9.897964661933626,8.706535397124819,P33)
p(9.403714708929815,9.575855236974185,P34)
p(8.89798662010835,8.713162301928937,P35)
p(10.411618446321173,9.688427268438522,P36)
p(9.811996929840806,10.488710991235497,P37)
p(12.195810768304092,10.937975482408014,P38)
p(13.106333419621507,11.351434671975623,P39)
p(12.293005932369129,11.933240823953838,P40)
p(11.328689411607575,11.436072413497518,P41)
p(9.306268841019332,9.626018056190253,P42)
p(8.311571457382739,9.523172954282035,P43)
p(8.71985367829372,10.43602870854335,P44)
p(9.630376329611135,10.849487898110963,P45)
p(10.201803491980646,12.042451989959842,P46)
p(10.726881386363008,10.637431630196769,P47)
p(11.298308548732532,11.830395722045632,P48)
p(10.592542686195124,11.12195056024633,P49)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P3,P6) s(P4,P6)
s(P1,P7)
s(P1,P8) s(P7,P8)
s(P8,P9) s(P7,P9)
s(P8,P10) s(P9,P10)
s(P10,P11) s(P9,P11)
s(P10,P12) s(P11,P12) s(P22,P12) s(P20,P12)
s(P7,P13) s(P6,P13)
s(P11,P14) s(P13,P14) s(P46,P14)
s(P5,P15)
s(P15,P16) s(P5,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P6,P19) s(P15,P19)
s(P22,P20) s(P23,P20) s(P14,P20)
s(P39,P21) s(P40,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P24,P25)
s(P24,P26) s(P25,P26)
s(P25,P27) s(P26,P27)
s(P25,P28) s(P27,P28)
s(P26,P29) s(P27,P29)
s(P24,P30)
s(P24,P31) s(P30,P31)
s(P30,P32) s(P31,P32)
s(P31,P33) s(P32,P33)
s(P32,P34) s(P33,P34)
s(P33,P35) s(P34,P35) s(P42,P35) s(P43,P35)
s(P29,P36) s(P30,P36)
s(P34,P37) s(P36,P37) s(P47,P37)
s(P28,P38)
s(P28,P39) s(P38,P39)
s(P38,P40) s(P39,P40) s(P41,P40)
s(P29,P41) s(P38,P41)
s(P37,P42) s(P43,P42) s(P44,P42)
s(P18,P43)
s(P18,P44) s(P43,P44)
s(P17,P45) s(P44,P45) s(P49,P45) s(P47,P45)
s(P13,P46) s(P19,P46) s(P48,P46)
s(P36,P47) s(P41,P47)
s(P40,P48) s(P23,P48) s(P49,P48)
s(P46,P49) s(P19,P49)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P7,MB10) f(P1,MA10,MB10)
color(#008000) m(P4,P5,MA11) m(P5,P15,MB11) b(P5,MA11,MB11)
pen(2)
color(red) s(P48,P49) abstand(P48,P49,A0) print(abs(P48,P49):,7.73,15.598) print(A0,8.5,15.598)
color(red) s(P45,P49) abstand(P45,P49,A1) print(abs(P45,P49):,7.73,15.419) print(A1,8.5,15.419)
color(red) s(P14,P46) abstand(P14,P46,A2) print(abs(P14,P46):,7.73,15.24) print(A2,8.5,15.24)
color(red) s(P45,P47) abstand(P45,P47,A3) print(abs(P45,P47):,7.73,15.061) print(A3,8.5,15.061)
color(red) s(P46,P48) abstand(P46,P48,A4) print(abs(P46,P48):,7.73,14.882) print(A4,8.5,14.882)
color(red) s(P40,P41) abstand(P40,P41,A5) print(abs(P40,P41):,7.73,14.703) print(A5,8.5,14.703)
print(min=0.9268934120161679,7.73,14.524)
print(max=1.1168219196649753,7.73,14.345)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1334, vom Themenstarter, eingetragen 2018-08-24
Jetzt wird es ernst. 😉
Meine heutigen Versuche für einen 4/4 mit nur 102 Kanten. Vielleicht schafft es Stefan da noch mehr rauszuholen. Das waren bisher meine kompliziertesten und aufwendigsten Eingaben, da die Graphen komplett asymmetrisch sind. Ich habe wohl an die acht Stunden herumprobiert. Da fedgeo die roten Kanten nicht immer zeichnen will(?), die Graphen auch noch als Bild. Jeder Graph besitzt nur 3 leicht falsche Kanten. Die Schwierigkeit beim Zurechtziehen besteht (jedenfalls für mich) darin, dass schon eine minimale Veränderung eines Winkels den Graphen zerknüllen lässt, obwohl er sich eigentlich zurechtziehen lassen könnte.
\geo
ebene(423.29,571.28)
x(7.22,13.33)
y(8.71,16.96)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''5.769294838959734''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''25.705029633057773''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''10.192338999851717''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''32.25305597740076''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''6.599108449130029''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-85.28415361812269,317.23375151269886];
#P[2]=[-138.9111227213231,273.422822948422]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,34,39); N(41,39,28); N(42,41,24); N(43,38,40); N(44,41,42);
#N(45,6,3);
#N(46,14,12); N(47,18,16); N(48,10,45); N(49,45,43); N(50,47,46); N(51,20,47);
#
#RA(46,48); RA(50,51);
#RA(49,40); RA(48,50);
#RA(44,49); RA(44,51);
#RA(4,43); RA(42,22);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.7684196544334,14.581142413194751,P1)
p(7.993997697506407,13.948472963458663,P2)
p(8.929116491639679,13.594138600379473,P3)
p(8.154694534712684,12.961469150643385,P4)
p(7.219575740579413,13.315803513722575,P5)
p(9.027519220306115,13.615291795881406,P6)
p(9.734420608223997,14.32260391069337,P7)
p(9.993520174096712,13.356753293380024,P8)
p(10.700421562014593,14.064065408191988,P9)
p(10.959521127887308,13.098214790878643,P10)
p(11.666422515805191,13.805526905690606,P11)
p(11.336265103032977,12.861601017290697,P12)
p(12.3188076080632,13.047639254782169,P13)
p(11.988650195290985,12.10371336638226,P14)
p(12.971192700321208,12.289751603873732,P15)
p(12.03707547699066,11.932785200584535,P16)
p(12.81327606220194,11.302299156712296,P17)
p(11.879158838871392,10.945332753423099,P18)
p(12.655359424082672,10.31484670955086,P19)
p(11.66246214170238,10.433821440657207,P20)
p(12.055875643346006,9.514459805214168,P21)
p(11.062978360965714,9.633434536320514,P22)
p(11.45639186260934,8.714072900877476,P23)
p(10.959930305172602,9.582131609714319,P24)
p(10.456400190061947,8.718153934553293,P25)
nolabel()
p(9.959938632625207,9.586212643390136,P26)
p(9.456408517514552,8.72223496822911,P27)
p(8.959946960077811,9.590293677065953,P28)
p(8.456416844967157,8.726316001904927,P29)
p(8.841280007247544,9.649289645255342,P30)
p(7.849529803942412,9.521104099095764,P31)
p(8.2343929662228,10.44407774244618,P32)
p(7.242642762917667,10.3158921962866,P33)
p(8.104798062527959,10.822536291637459,P34)
p(7.234953755471583,11.315862635431925,P35)
p(8.097109055081873,11.822506730782784,P36)
p(7.2272647480254975,12.315833074577249,P37)
p(8.089420047635787,12.82247716992811,P38)
p(9.226143169527932,10.57226328860576,P39)
p(8.843770809410946,11.49627161011513,P40)
p(9.92399512055291,9.856021252384322,P41)
p(10.657788041774669,10.53539445524475,P42)
p(9.02859675558265,12.479042880361536,P43)
p(9.702537128836259,10.831191164709772,P44)
p(9.18821605751239,12.628287983066127,P45)
p(11.006107690260762,11.917675128890789,P46)
p(11.10295825366011,11.575818797295337,P47)
p(10.176572081141707,12.4761289525893,P48)
p(9.787288668639688,11.827593280575146,P49)
p(10.10770468753777,11.478503129899146,P50)
p(10.689609310750281,10.665246092128239,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4) s(P43,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P34,P40) s(P39,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42) s(P22,P42)
s(P38,P43) s(P40,P43)
s(P41,P44) s(P42,P44) s(P49,P44) s(P51,P44)
s(P6,P45) s(P3,P45)
s(P14,P46) s(P12,P46) s(P48,P46)
s(P18,P47) s(P16,P47)
s(P10,P48) s(P45,P48) s(P50,P48)
s(P45,P49) s(P43,P49) s(P40,P49)
s(P47,P50) s(P46,P50) s(P51,P50)
s(P20,P51) s(P47,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) b(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
pen(2)
color(red) s(P46,P48) abstand(P46,P48,A0) print(abs(P46,P48):,7.22,16.964) print(A0,8.16,16.964)
color(red) s(P50,P51) abstand(P50,P51,A1) print(abs(P50,P51):,7.22,16.747) print(A1,8.16,16.747)
color(red) s(P49,P40) abstand(P49,P40,A2) print(abs(P49,P40):,7.22,16.531) print(A2,8.16,16.531)
color(red) s(P48,P50) abstand(P48,P50,A3) print(abs(P48,P50):,7.22,16.314) print(A3,8.16,16.314)
color(red) s(P44,P49) abstand(P44,P49,A4) print(abs(P44,P49):,7.22,16.097) print(A4,8.16,16.097)
color(red) s(P44,P51) abstand(P44,P51,A5) print(abs(P44,P51):,7.22,15.881) print(A5,8.16,15.881)
color(red) s(P4,P43) abstand(P4,P43,A6) print(abs(P4,P43):,7.22,15.664) print(A6,8.16,15.664)
color(red) s(P42,P22) abstand(P42,P22,A7) print(abs(P42,P22):,7.22,15.448) print(A7,8.16,15.448)
print(min=0.9887926426263259,7.22,15.231)
print(max=1.000924202636043,7.22,15.014)
\geooff
\geoprint()
\geo
ebene(434.57,568.34)
x(7.03,13.31)
y(8.77,16.97)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''8.844768480688757''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''23.566192280223227''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''9.963055224793873''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''29.49269666846242''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''12.472037600605725''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-80.48934638082957,317.8435022956346];
#P[2]=[-137.0417787706764,277.88012321363516]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,34,39); N(41,39,28); N(42,41,24); N(43,38,40); N(44,41,42);
#N(45,6,3);
#N(46,14,12); N(47,18,16); N(48,10,45); N(49,45,43); N(50,47,46); N(51,20,47);
#
#RA(46,48); RA(50,42);
#RA(44,40); RA(48,49);
#RA(44,49);
#RA(4,43); RA(51,22);
# RA(50,51);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.83766100940624,14.589947766218714,P1)
p(8.020992715584784,14.012840412369581,P2)
p(8.929116491639679,13.594138600379472,P3)
p(8.112448197818221,13.017031246530337,P4)
p(7.204324421763327,13.435733058520444,P5)
p(9.08114252770932,13.620042229455041,P6)
p(9.799364602666301,14.31585617803935,P7)
p(10.04284612096938,13.345950641275676,P8)
p(10.761068195926363,14.041764589859984,P9)
p(11.00454971422944,13.071859053096311,P10)
p(11.722771789186424,13.767673001680619,P11)
p(11.342642460668806,12.84273965618985,P12)
p(12.333722898929949,12.976004673715456,P13)
p(11.953593570412329,12.051071328224689,P14)
p(12.944674008673474,12.184336345750292,P15)
p(11.991596138884201,11.881611100489936,P16)
p(12.73030282654118,11.207584076097849,P17)
p(11.777224956751908,10.90485883083749,P18)
p(12.515931644408889,10.230831806445403,P19)
p(11.541115702877448,10.453842748186318,P20)
p(11.835390532773644,9.498121907935586,P21)
p(10.860574591242203,9.7211328496765,P22)
p(11.1548494211384,8.76541200942577,P23)
p(10.661118574462549,9.635026781057869,P24)
p(10.154875514060873,8.772635939388534,P25)
nolabel()
p(9.661144667385024,9.642250711020633,P26)
p(9.154901606983348,8.779859869351297,P27)
p(8.661170760307497,9.649474640983398,P28)
p(8.154927699905821,8.787083799314061,P29)
p(8.589799554419631,9.687576148060966,P30)
p(7.592514377234391,9.613940047087326,P31)
p(8.027386231748201,10.51443239583423,P32)
p(7.03010105456296,10.440796294860588,P33)
p(7.92370205578215,10.889658468161103,P34)
p(7.0881755102964155,11.439108549413874,P35)
p(7.981776511515605,11.887970722714389,P36)
p(7.146249966029871,12.437420803967159,P37)
p(8.039850967249063,12.886282977267674,P38)
p(9.024671408933443,10.588068496807873,P39)
p(8.691123374882308,11.530801602718883,P40)
p(9.64873439354062,9.806694456259313,P41)
p(10.298391195222598,10.566922080085456,P42)
p(8.959718865984083,12.494054665086088,P43)
p(9.315186359489488,10.749427562170325,P44)
p(9.172598009942755,12.624233063615799,P45)
p(10.962513132151186,11.917806310699083,P46)
p(11.03851826909493,11.57888585522958,P47)
p(10.167617499390456,12.524552495703919,P48)
p(9.583781850591262,11.712680624537528,P49)
p(10.039578499187694,11.532849607579701,P50)
p(10.570651265262644,10.695086971588623,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4) s(P43,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P34,P40) s(P39,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42)
s(P38,P43) s(P40,P43)
s(P41,P44) s(P42,P44) s(P40,P44) s(P49,P44)
s(P6,P45) s(P3,P45)
s(P14,P46) s(P12,P46) s(P48,P46)
s(P18,P47) s(P16,P47)
s(P10,P48) s(P45,P48) s(P49,P48)
s(P45,P49) s(P43,P49)
s(P47,P50) s(P46,P50) s(P42,P50) s(P51,P50)
s(P20,P51) s(P47,P51) s(P22,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
pen(2)
color(red) s(P46,P48) abstand(P46,P48,A0) print(abs(P46,P48):,7.03,16.973) print(A0,7.97,16.973)
color(red) s(P50,P42) abstand(P50,P42,A1) print(abs(P50,P42):,7.03,16.756) print(A1,7.97,16.756)
color(red) s(P44,P40) abstand(P44,P40,A2) print(abs(P44,P40):,7.03,16.539) print(A2,7.97,16.539)
color(red) s(P48,P49) abstand(P48,P49,A3) print(abs(P48,P49):,7.03,16.323) print(A3,7.97,16.323)
color(red) s(P44,P49) abstand(P44,P49,A4) print(abs(P44,P49):,7.03,16.106) print(A4,7.97,16.106)
color(red) s(P4,P43) abstand(P4,P43,A5) print(abs(P4,P43):,7.03,15.89) print(A5,7.97,15.89)
color(red) s(P51,P22) abstand(P51,P22,A6) print(abs(P51,P22):,7.03,15.673) print(A6,7.97,15.673)
color(red) s(P50,P51) abstand(P50,P51,A7) print(abs(P50,P51):,7.03,15.456) print(A7,7.97,15.456)
print(min=0.991909530718008,7.03,15.24)
print(max=1.0161900248165503,7.03,15.023)
\geooff
\geoprint()
Und diesen hatte ich hier schon im März 2014 als Heftstreifenversion gepostet. Stefans Test, auch von 2014, ist etwas weiter unten im alten Thread.
\geo
ebene(459.08,556.36)
x(6.61,13.24)
y(8.94,16.98)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''1094.893321606967''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''736.7530666075185''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''9.336592795069166''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''28.955024371859867''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''2179.2523653359435''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-74.45520210423773,318.1330628192828];
#P[2]=[-134.27547340179302,283.2506257090882]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,34,39); N(41,39,28); N(42,41,24); N(43,38,40); N(44,41,42);
#N(45,6,3);
#N(46,14,12); N(47,18,16); N(48,46,10); N(49,44,42); N(50,22,20); N(51,46,48);
#
#RA(45,49); RA(44,40); RA(45,48);
#RA(47,50); RA(50,51); RA(4,43);
#RA(47,51);
#RA(43,49);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.924799512610953,14.594129282182081,P1)
p(8.060940668136528,14.090395327774289,P2)
p(8.92911649163968,13.594138600379464,P3)
p(8.065257647165257,13.09040464597167,P4)
p(7.197081823662103,13.586661373366496,P5)
p(9.185989222935719,13.62884179380338,P6)
p(9.891357854664568,14.337682462341078,P7)
p(10.152547564989336,13.372394973962376,P8)
p(10.857916196718184,14.081235642500074,P9)
p(11.119105907042952,13.115948154121371,P10)
p(11.8244745387718,13.82478882265907,P11)
p(11.353366183705456,12.942713475658213,P12)
p(12.352820019793343,12.975759345736087,P13)
p(11.881711664726998,12.09368399873523,P14)
p(12.881165500814888,12.126729868813104,P15)
p(11.90031329043573,11.93197632868015,P16)
p(12.559400908857398,11.179910167200157,P17)
p(11.57854869847824,10.985156627067203,P18)
p(12.23763631689991,10.23309046558721,P19)
p(11.29684218594868,10.572068935652375,P20)
p(11.47367528501188,9.587828083484723,P21)
p(10.53288115406065,9.926806553549888,P22)
p(10.70971425312385,8.942565701382236,P23)
p(10.218237110907824,9.813456175942136,P24)
p(9.709762407133079,8.95237924812373,P25)
p(9.218285264917052,9.823269722683628,P26)
p(8.709810561142307,8.962192794865222,P27)
p(8.21833341892628,9.833083269425122,P28)
p(7.709858715151535,8.972006341606715,P29)
p(8.159605007795193,9.865162695361917,P30)
p(7.161235769569878,9.808076233171594,P31)
p(7.610982062213536,10.701232586926794,P32)
p(6.612612823988222,10.644146124736471,P33)
p(7.55945530937943,10.965843665694122,P34)
p(6.807435823879516,11.62498454094648,P35)
p(7.754278309270724,11.94668208190413,P36)
p(7.002258823770809,12.605822957156487,P37)
p(7.949101309162018,12.92752049811414,P38)
p(8.609351300438849,10.758319049117118,P39)
p(8.248215965600302,11.690832464533246,P40)
p(9.210364118183094,9.959079665135622,P41)
p(9.837376757883948,10.73808874701809,P42)
p(8.84858122368507,12.490558390638439,P43)
p(8.849228783344511,10.891593080551734,P44)
p(9.190306201964448,12.628851112000762,P45)
p(10.88225782863911,12.060638128657356,P46)
p(10.91946108005657,11.737222788547196,P47)
p(10.179935346204742,12.772497054756641,P48)
p(9.476241423045366,11.670602162434204,P49)
p(10.35604805499745,10.911047405717538,P50)
p(9.914608673509237,11.808338480269885,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4) s(P43,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P34,P40) s(P39,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42)
s(P38,P43) s(P40,P43) s(P49,P43)
s(P41,P44) s(P42,P44) s(P40,P44)
s(P6,P45) s(P3,P45) s(P49,P45) s(P48,P45)
s(P14,P46) s(P12,P46)
s(P18,P47) s(P16,P47) s(P50,P47) s(P51,P47)
s(P46,P48) s(P10,P48)
s(P44,P49) s(P42,P49)
s(P22,P50) s(P20,P50) s(P51,P50)
s(P46,P51) s(P48,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) b(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) b(P23,MA14,MB14)
pen(2)
color(red) s(P45,P49) abstand(P45,P49,A0) print(abs(P45,P49):,6.61,16.977) print(A0,7.55,16.977)
color(red) s(P44,P40) abstand(P44,P40,A1) print(abs(P44,P40):,6.61,16.76) print(A1,7.55,16.76)
color(red) s(P45,P48) abstand(P45,P48,A2) print(abs(P45,P48):,6.61,16.544) print(A2,7.55,16.544)
color(red) s(P47,P50) abstand(P47,P50,A3) print(abs(P47,P50):,6.61,16.327) print(A3,7.55,16.327)
color(red) s(P50,P51) abstand(P50,P51,A4) print(abs(P50,P51):,6.61,16.11) print(A4,7.55,16.11)
color(red) s(P4,P43) abstand(P4,P43,A5) print(abs(P4,P43):,6.61,15.894) print(A5,7.55,15.894)
color(red) s(P47,P51) abstand(P47,P51,A6) print(abs(P47,P51):,6.61,15.677) print(A6,7.55,15.677)
color(red) s(P43,P49) abstand(P43,P49,A7) print(abs(P43,P49):,6.61,15.461) print(A7,7.55,15.461)
print(min=0.9866161135766489,6.61,15.244)
print(max=1.0326110313336412,6.61,15.027)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1335, vom Themenstarter, eingetragen 2018-08-24
Hier noch mal die Graphen aus #1334 als "faire" Version. Darunter verstehe ich, dass die Hülle mit ihren Rauten bzw. angrenzenden Kanten nur aus Einheitskanten besteht und die noch falschen Kanten möglichst im Zentrum liegen. Diese Versionen sind minimal schlechter.
\geo
ebene(509.4,655.97)
x(7.37,13.45)
y(8.1,15.93)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''6.388476978200076''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''25.303475224947388''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''10.221403725880153''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''30.467471173035666''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''9.649639744646137''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-86.17563205238422,331.8091822563652];
#P[2]=[-151.9795552335696,279.93849534925937]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,34,39); N(41,24,22); N(42,41,28); N(43,4,38); N(44,43,40);
#N(45,6,3);
#N(46,14,12); N(47,18,16); N(48,10,45); N(49,20,47); N(50,41,44); N(51,49,46);
#
#RA(46,48); RA(39,42); RA(40,43); RA(45,44); RA(48,51);
#RA(47,51); RA(49,50); RA(42,50);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.971525536537007,13.960020513522512,P1)
p(8.1861799234478,13.340962949154273,P2)
p(9.114972307140219,12.970362479652474,P3)
p(8.329626694051012,12.351304915284235,P4)
p(7.400834310358592,12.721905384786034,P5)
p(9.22419987588863,12.992469130787093,P6)
p(9.935786783128451,13.695067218917757,P7)
p(10.188461122480074,12.727515836182338,P8)
p(10.900048029719896,13.430113924313003,P9)
p(11.152722369071519,12.462562541577585,P10)
p(11.86430927631134,13.165160629708248,P11)
p(11.52129376225757,12.225830891480811,P12)
p(12.506284935119604,12.398435611531788,P13)
p(12.163269421065834,11.459105873304349,P14)
p(13.148260593927867,11.631710593355326,P15)
p(12.209530955228155,11.287056178866397,P16)
p(12.977375253051877,10.646419671711522,P17)
p(12.038645614352163,10.301765257222593,P18)
p(12.806489912175884,9.661128750067718,P19)
p(11.81983756184913,9.823969591365884,P20)
p(12.172139431674665,8.888083170630209,P21)
p(11.185487081347913,9.050924011928375,P22)
p(11.537788951173448,8.1150375911927,P23)
p(11.03359571383822,8.97862845463755,P24)
p(10.537800706286456,8.1101888709665,P25)
p(10.033607468951228,8.973779734411352,P26)
nolabel()
p(9.537812461399463,8.105340150740302,P27)
p(9.033619224064235,8.968931014185152,P28)
p(8.53782421651247,8.100491430514102,P29)
p(8.947338080895925,9.012795324442946,P30)
p(7.952502800590356,8.91129278723653,P31)
p(8.362016664973808,9.823596681165373,P32)
p(7.367181384668239,9.722094143958957,P33)
p(8.23876111932142,10.212347921243632,P34)
p(7.378399026565024,10.72203122423465,P35)
p(8.249978761218204,11.212285001519323,P36)
p(7.389616668461809,11.72196830451034,P37)
p(8.261196403114988,12.212222081795016,P38)
p(9.356851945279377,9.92509921837179,P39)
p(9.001001403134298,10.85964209681828,P40)
p(10.681293844012684,9.914514875373223,P41)
p(10.013085098237276,9.170541037076973,P42)
p(9.189988786807408,11.841621612293215,P43)
p(9.945914301368083,11.186963979300078,P44)
p(9.367646646491838,12.002811096917053,P45)
p(11.178278248203801,11.286501153253372,P46)
p(11.270801316528443,10.942401764377466,P47)
p(10.356953507099034,11.856962080617542,P48)
p(10.843114693352385,10.038474691900786,P49)
p(9.72636874493882,10.211361730095943,P50)
p(10.273582222687619,10.86044352638205,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39) s(P42,P39)
s(P34,P40) s(P39,P40) s(P43,P40)
s(P24,P41) s(P22,P41)
s(P41,P42) s(P28,P42) s(P50,P42)
s(P4,P43) s(P38,P43)
s(P43,P44) s(P40,P44)
s(P6,P45) s(P3,P45) s(P44,P45)
s(P14,P46) s(P12,P46) s(P48,P46)
s(P18,P47) s(P16,P47) s(P51,P47)
s(P10,P48) s(P45,P48) s(P51,P48)
s(P20,P49) s(P47,P49) s(P50,P49)
s(P41,P50) s(P44,P50)
s(P49,P51) s(P46,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
pen(2)
color(blue) s(P46,P48) abstand(P46,P48,A0) print(abs(P46,P48):,7.37,15.929) print(A0,8.14,15.929)
color(blue) s(P39,P42) abstand(P39,P42,A1) print(abs(P39,P42):,7.37,15.75) print(A1,8.14,15.75)
color(blue) s(P40,P43) abstand(P40,P43,A2) print(abs(P40,P43):,7.37,15.571) print(A2,8.14,15.571)
color(blue) s(P45,P44) abstand(P45,P44,A3) print(abs(P45,P44):,7.37,15.392) print(A3,8.14,15.392)
color(blue) s(P48,P51) abstand(P48,P51,A4) print(abs(P48,P51):,7.37,15.213) print(A4,8.14,15.213)
color(red) s(P47,P51) abstand(P47,P51,A5) print(abs(P47,P51):,7.37,15.034) print(A5,8.14,15.034)
color(red) s(P49,P50) abstand(P49,P50,A6) print(abs(P49,P50):,7.37,14.855) print(A6,8.14,14.855)
color(red) s(P42,P50) abstand(P42,P50,A7) print(abs(P42,P50):,7.37,14.676) print(A7,8.14,14.676)
print(min=0.9999999999999981,7.37,14.497)
print(max=1.1300493092223927,7.37,14.318)
\geooff
\geoprint()
\geo
ebene(423.88,569.12)
x(7.21,13.33)
y(8.75,16.97)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''8.786122285402095''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''23.61084933960883''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''12.092638636077549''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''28.955024371859885''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''10.152584565933491''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-81.69185670774455,317.7224721505585];
#P[2]=[-137.53821875387422,276.77820364967556]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,34,39); N(41,39,28); N(42,41,24); N(43,38,40); N(44,41,42);
#N(45,6,3);
#N(46,14,12); N(47,18,16); N(48,10,45); N(49,45,43); N(50,47,46); N(51,20,47);
#
#RA(46,48); RA(51,22);
#RA(44,40); RA(48,49); RA(4,43);
#RA(44,49);
#RA(50,42);
#RA(50,51);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.820295672222962,14.588199981412592,P1)
p(8.013823673035596,13.996927696820515,P2)
p(8.929116491639679,13.594138600379472,P3)
p(8.122644492452313,13.002866315787394,P4)
p(7.207351673848229,13.405655412228437,P5)
p(9.079678891781642,13.622425501830856,P6)
p(9.78637251564678,14.329945199074938,P7)
p(10.045755735205462,13.364170719493202,P8)
p(10.7524493590706,14.071690416737287,P9)
p(11.011832578629281,13.10591593715555,P10)
p(11.71852620249442,13.813435634399632,P11)
p(11.35436967918525,12.882097872612118,P12)
p(12.343010102051561,13.032397953366313,P13)
p(11.978853578742392,12.1010601915788,P14)
p(12.967494001608705,12.251360272332995,P15)
p(12.032278156189756,11.897282141862728,P16)
p(12.806526734810982,11.26440052694331,P17)
p(11.871310889392033,10.910322396473044,P18)
p(12.645559468013259,10.277440781553626,P19)
p(11.661699467381716,10.45638071325502,P20)
p(11.998662941092629,9.514862993090032,P21)
p(11.014802940461085,9.693802924791425,P22)
p(11.351766414171998,8.752285204626439,P23)
p(10.854117655745721,9.6196638493006,P24)
p(10.35177009397092,8.754998060004578,P25)
nolabel()
p(9.854121335544642,9.62237670467874,P26)
p(9.35177377376984,8.757710915382717,P27)
p(8.854125015343564,9.625089560056878,P28)
p(8.351777453568763,8.760423770760857,P29)
p(8.779891809342157,9.6641483407382,P30)
p(7.783186195830915,9.583043963574095,P31)
p(8.211300551604308,10.486768533551437,P32)
p(7.2145949380930645,10.405664156387335,P33)
p(8.079410606948784,10.907753649308303,P34)
p(7.21218051667812,11.405661241667703,P35)
p(8.07699618553384,11.90775073458867,P36)
p(7.209766095263174,12.405658326948071,P37)
p(8.074581764118893,12.907747819869037,P38)
p(9.20800616511555,10.567872910715542,P39)
p(8.876672889200558,11.511386694542486,P40)
p(9.839951161227162,9.792859670899928,P41)
p(10.491391428884574,10.551559596874908,P42)
p(8.989874582722976,12.50495872342799,P43)
p(9.508617885312164,10.73637345472687,P44)
p(9.18849971119836,12.628364120797736,P45)
p(10.990213155876079,11.950760110824604,P46)
p(11.097062310770806,11.543204011392461,P47)
p(10.184901795618487,12.543612211301673,P48)
p(9.613303446765592,11.723078648558108,P49)
p(10.098036540909028,11.499073396711895,P50)
p(10.677839466750171,10.635320644956414,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4) s(P43,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P34,P40) s(P39,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42)
s(P38,P43) s(P40,P43)
s(P41,P44) s(P42,P44) s(P40,P44) s(P49,P44)
s(P6,P45) s(P3,P45)
s(P14,P46) s(P12,P46) s(P48,P46)
s(P18,P47) s(P16,P47)
s(P10,P48) s(P45,P48) s(P49,P48)
s(P45,P49) s(P43,P49)
s(P47,P50) s(P46,P50) s(P42,P50) s(P51,P50)
s(P20,P51) s(P47,P51) s(P22,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
pen(2)
color(blue) s(P46,P48) abstand(P46,P48,A0) print(abs(P46,P48):,7.21,16.971) print(A0,8.15,16.971)
color(blue) s(P51,P22) abstand(P51,P22,A1) print(abs(P51,P22):,7.21,16.754) print(A1,8.15,16.754)
color(blue) s(P44,P40) abstand(P44,P40,A2) print(abs(P44,P40):,7.21,16.538) print(A2,8.15,16.538)
color(blue) s(P48,P49) abstand(P48,P49,A3) print(abs(P48,P49):,7.21,16.321) print(A3,8.15,16.321)
color(blue) s(P4,P43) abstand(P4,P43,A4) print(abs(P4,P43):,7.21,16.104) print(A4,8.15,16.104)
color(red) s(P44,P49) abstand(P44,P49,A5) print(abs(P44,P49):,7.21,15.888) print(A5,8.15,15.888)
color(red) s(P50,P42) abstand(P50,P42,A6) print(abs(P50,P42):,7.21,15.671) print(A6,8.15,15.671)
color(red) s(P50,P51) abstand(P50,P51,A7) print(abs(P50,P51):,7.21,15.455) print(A7,8.15,15.455)
print(min=0.9922430177685101,7.21,15.238)
print(max=1.0403077664706322,7.21,15.021)
\geooff
\geoprint()
\geo
ebene(466.82,556.95)
x(6.81,13.55)
y(8.93,16.98)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''1090.6899160307312''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''742.054442513324''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''5.1246272063332245''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''28.955024371859867''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''2180.3273583261416''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-56.87170869683384,318.08044646947343];
#P[2]=[-115.43815960250203,281.13156143658284]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,34,39); N(41,39,28); N(42,41,24); N(43,4,38); N(44,41,42);
#N(45,6,3);
#N(46,14,12); N(47,18,16); N(48,46,10); N(49,43,42); N(50,22,20); N(51,47,46);
#
#RA(45,49); RA(45,48);
#RA(47,50); RA(40,43); RA(44,49);
#RA(50,51); RA(48,51); RA(44,40);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(9.178721067416143,14.59336945448219,P1)
p(8.332968523889878,14.059794122294829,P2)
p(9.217934588159988,13.594138600379459,P3)
p(8.372182044633723,13.060563268192096,P4)
p(7.487215980363613,13.526218790107466,P5)
p(9.402605057949737,13.618753653880356,P6)
p(10.134705104933836,14.299950777484,P7)
p(10.35858909546743,13.325334976882164,P8)
p(11.09068914245153,14.006532100485806,P9)
p(11.314573132985123,13.031916299883974,P10)
p(12.046673179969224,13.713113423487616,P11)
p(11.623923695931806,12.80686683797896,P12)
p(12.620131003093917,12.89387833812012,P13)
p(12.1973815190565,11.987631752611465,P14)
p(13.193588826218608,12.074643252752624,P15)
p(12.209135671568534,11.89899591773295,P16)
p(12.853477303127644,11.134258144480091,P17)
p(11.86902414847757,10.958610809460417,P18)
p(12.513365780036679,10.193873036207558,P19)
p(11.579339769919448,10.551078036766741,P20)
p(11.737004170134977,9.563585283930205,P21)
p(10.802978160017746,9.920790284489389,P22)
p(10.960642560233275,8.933297531652855,P23)
p(10.469758362671174,9.804522361753449,P24)
p(9.960697626177327,8.943791761298034,P25)
p(9.469813428615225,9.81501659139863,P26)
p(8.960752692121378,8.954285990943212,P27)
p(8.469868494559279,9.825510821043808,P28)
p(7.960807758065432,8.964780220588391,P29)
p(8.383263329192266,9.8711638537283,P30)
p(7.387084291755253,9.783829293724448,P31)
p(7.809539862882087,10.690212926864357,P32)
p(6.813360825445074,10.602878366860505,P33)
p(7.769565708078771,10.895576543191481,P34)
p(7.037979210417921,11.577325174609491,P35)
p(7.994184093051618,11.870023350940468,P36)
p(7.262597595390767,12.551771982358478,P37)
p(8.218802478024465,12.844470158689454,P38)
p(8.8057189003191,10.777547486868208,P39)
p(8.384217395219704,11.684375188914712,P40)
p(9.451877596536097,10.014344408190487,P41)
p(10.133310920297301,10.7462246069032,P42)
p(9.103768542294572,12.378814636774086,P43)
p(9.158767413804688,10.970423076909313,P44)
p(9.441818578693583,12.619522799777625,P45)
p(11.201174211894386,11.900620252470306,P46)
p(11.224682516918458,11.723348582713276,P47)
p(10.43928061360687,12.54832245633293,P48)
p(9.84020073756594,11.70230327562204,P49)
p(10.645313759802217,10.908283037325923,P50)
p(10.22557749828635,11.68105009876722,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P34,P40) s(P39,P40) s(P43,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42)
s(P4,P43) s(P38,P43)
s(P41,P44) s(P42,P44) s(P49,P44) s(P40,P44)
s(P6,P45) s(P3,P45) s(P49,P45) s(P48,P45)
s(P14,P46) s(P12,P46)
s(P18,P47) s(P16,P47) s(P50,P47)
s(P46,P48) s(P10,P48) s(P51,P48)
s(P43,P49) s(P42,P49)
s(P22,P50) s(P20,P50) s(P51,P50)
s(P47,P51) s(P46,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) b(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) b(P23,MA14,MB14)
pen(2)
color(blue) s(P45,P49) abstand(P45,P49,A0) print(abs(P45,P49):,6.81,16.976) print(A0,7.75,16.976)
color(blue) s(P45,P48) abstand(P45,P48,A1) print(abs(P45,P48):,6.81,16.76) print(A1,7.75,16.76)
color(blue) s(P47,P50) abstand(P47,P50,A2) print(abs(P47,P50):,6.81,16.543) print(A2,7.75,16.543)
color(blue) s(P40,P43) abstand(P40,P43,A3) print(abs(P40,P43):,6.81,16.326) print(A3,7.75,16.326)
color(blue) s(P44,P49) abstand(P44,P49,A4) print(abs(P44,P49):,6.81,16.11) print(A4,7.75,16.11)
color(red) s(P50,P51) abstand(P50,P51,A5) print(abs(P50,P51):,6.81,15.893) print(A5,7.75,15.893)
color(red) s(P48,P51) abstand(P48,P51,A6) print(abs(P48,P51):,6.81,15.676) print(A6,7.75,15.676)
color(red) s(P44,P40) abstand(P44,P40,A7) print(abs(P44,P40):,6.81,15.46) print(A7,7.75,15.46)
print(min=0.879401762836494,6.81,15.243)
print(max=1.0534017987107152,6.81,15.027)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
StefanVogel
Senior Dabei seit: 26.11.2005 Mitteilungen: 3757
Herkunft: Raun
Beitrag No.1336, eingetragen 2018-08-25
Dass die roten Kanten nicht gezeichnet werden, scheint an der Anzahl der Punktbezeichnungen zu liegen. Wenn ich diese mit nolabel() auf die ersten 15 Punkte beschränke, werden alle Kanten gezeichnet. Ich habe das bisher so akzeptiert und dann nur die benötigten Punkte beschriftet. Irgendwo muss ja eine Grenze sein bei der fedgeo-Eingabe.
\geo
ebene(423.88,569.12)
x(7.21,13.33)
y(8.75,16.97)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''8.786122285402095''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''23.61084933960883''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''12.092638636077549''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''28.955024371859885''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''10.152584565933491''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-81.69185670774455,317.7224721505585];
#P[2]=[-137.53821875387422,276.77820364967556]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,34,39); N(41,39,28); N(42,41,24); N(43,38,40); N(44,41,42);
#N(45,6,3);
#N(46,14,12); N(47,18,16); N(48,10,45); N(49,45,43); N(50,47,46); N(51,20,47);
#
#RA(46,48); RA(51,22);
#RA(44,40); RA(48,49); RA(4,43);
#RA(44,49);
#RA(50,42);
#RA(50,51);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.820295672222962,14.588199981412592,P1)
p(8.013823673035596,13.996927696820515,P2)
p(8.929116491639679,13.594138600379472,P3)
p(8.122644492452313,13.002866315787394,P4)
p(7.207351673848229,13.405655412228437,P5)
p(9.079678891781642,13.622425501830856,P6)
p(9.78637251564678,14.329945199074938,P7)
p(10.045755735205462,13.364170719493202,P8)
p(10.7524493590706,14.071690416737287,P9)
p(11.011832578629281,13.10591593715555,P10)
p(11.71852620249442,13.813435634399632,P11)
p(11.35436967918525,12.882097872612118,P12)
p(12.343010102051561,13.032397953366313,P13)
p(11.978853578742392,12.1010601915788,P14)
p(12.967494001608705,12.251360272332995,P15)
nolabel()
p(12.032278156189756,11.897282141862728,P16)
p(12.806526734810982,11.26440052694331,P17)
p(11.871310889392033,10.910322396473044,P18)
p(12.645559468013259,10.277440781553626,P19)
p(11.661699467381716,10.45638071325502,P20)
p(11.998662941092629,9.514862993090032,P21)
p(11.014802940461085,9.693802924791425,P22)
p(11.351766414171998,8.752285204626439,P23)
p(10.854117655745721,9.6196638493006,P24)
p(10.35177009397092,8.754998060004578,P25)
p(9.854121335544642,9.62237670467874,P26)
p(9.35177377376984,8.757710915382717,P27)
p(8.854125015343564,9.625089560056878,P28)
p(8.351777453568763,8.760423770760857,P29)
p(8.779891809342157,9.6641483407382,P30)
p(7.783186195830915,9.583043963574095,P31)
p(8.211300551604308,10.486768533551437,P32)
p(7.2145949380930645,10.405664156387335,P33)
p(8.079410606948784,10.907753649308303,P34)
p(7.21218051667812,11.405661241667703,P35)
p(8.07699618553384,11.90775073458867,P36)
p(7.209766095263174,12.405658326948071,P37)
p(8.074581764118893,12.907747819869037,P38)
p(9.20800616511555,10.567872910715542,P39)
p(8.876672889200558,11.511386694542486,P40)
p(9.839951161227162,9.792859670899928,P41)
p(10.491391428884574,10.551559596874908,P42)
p(8.989874582722976,12.50495872342799,P43)
p(9.508617885312164,10.73637345472687,P44)
p(9.18849971119836,12.628364120797736,P45)
p(10.990213155876079,11.950760110824604,P46)
p(11.097062310770806,11.543204011392461,P47)
p(10.184901795618487,12.543612211301673,P48)
p(9.613303446765592,11.723078648558108,P49)
p(10.098036540909028,11.499073396711895,P50)
p(10.677839466750171,10.635320644956414,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4) s(P43,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P34,P40) s(P39,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42)
s(P38,P43) s(P40,P43)
s(P41,P44) s(P42,P44) s(P40,P44) s(P49,P44)
s(P6,P45) s(P3,P45)
s(P14,P46) s(P12,P46) s(P48,P46)
s(P18,P47) s(P16,P47)
s(P10,P48) s(P45,P48) s(P49,P48)
s(P45,P49) s(P43,P49)
s(P47,P50) s(P46,P50) s(P42,P50) s(P51,P50)
s(P20,P51) s(P47,P51) s(P22,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
pen(2)
color(red) s(P46,P48) abstand(P46,P48,A0) print(abs(P46,P48):,7.21,16.971) print(A0,8.15,16.971)
color(red) s(P51,P22) abstand(P51,P22,A1) print(abs(P51,P22):,7.21,16.754) print(A1,8.15,16.754)
color(red) s(P44,P40) abstand(P44,P40,A2) print(abs(P44,P40):,7.21,16.538) print(A2,8.15,16.538)
color(red) s(P48,P49) abstand(P48,P49,A3) print(abs(P48,P49):,7.21,16.321) print(A3,8.15,16.321)
color(red) s(P4,P43) abstand(P4,P43,A4) print(abs(P4,P43):,7.21,16.104) print(A4,8.15,16.104)
color(red) s(P44,P49) abstand(P44,P49,A5) print(abs(P44,P49):,7.21,15.888) print(A5,8.15,15.888)
color(red) s(P50,P42) abstand(P50,P42,A6) print(abs(P50,P42):,7.21,15.671) print(A6,8.15,15.671)
color(red) s(P50,P51) abstand(P50,P51,A7) print(abs(P50,P51):,7.21,15.455) print(A7,8.15,15.455)
print(min=0.9922430177685101,7.21,15.238)
print(max=1.0403077664706322,7.21,15.021)
\geooff
\geoprint()
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1337, vom Themenstarter, eingetragen 2018-08-25
Hier eine bessere Version des zweiten Graphen mit zwei zusätzlichen inneren Winkeln. Es bleiben aber drei leicht falsche Kanten.
\geo
ebene(423.88,599.12)
x(7.21,13.33)
y(8.9,17.55)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''8.78612228540216''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''23.610849339608613''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''12.092638636077316''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''28.95502437185983''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''10.152584565934031''/>
#<Winkel size=''18'' color=''limegreen'' id=''sechsterWinkel''
#value=''-64.86175885220375''/>
#<Winkel size=''18'' color=''LightBlue'' id=''siebenterWinkel''
#value=''65.21446789388249''/>
#<Feinjustieren Anzahl=''7''/>
#<Rechenweg>
#P[1]=[-81.69185670774459,327.72247215055853];
#P[2]=[-137.53821875387422,286.77820364967556]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,4 ,38); N(41,39,28); N(42,41,24);
#N(43,40,34); N(44,41,42); N(45,6,3);
#M(46,45,45,sechsterWinkel,1); N(48,22,20); N(49,14,12);
#M(50,48,48,siebenterWinkel,1);
#
#RA(39,43); RA(47,49); RA(47,10); RA(18,50); RA(40,46);
#RA(16,50); RA(43,44); RA(44,46); RA(42,51); RA(49,51);
#
#</Rechenweg>
#
#<Knopf id=''start_siebenterWinkel'' color=''LightBlue''/>
#<animate a0:href=''#siebenterWinkel'' xmlns:a0=''http://www.w3.org/1999/xlink''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_siebenterWinkel.click+0s'' end=''stop_all_angles.click+0s''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.82029567222296,14.732609029672748,P1)
p(8.013823673035596,14.14133674508067,P2)
p(8.929116491639679,13.738547648639628,P3)
p(8.122644492452315,13.147275364047552,P4)
p(7.2073516738482315,13.550064460488592,P5)
p(9.079678891781644,13.766834550091012,P6)
p(9.78637251564678,14.474354247335096,P7)
p(10.045755735205464,13.508579767753362,P8)
p(10.7524493590706,14.216099464997445,P9)
p(11.011832578629283,13.250324985415713,P10)
p(11.71852620249442,13.957844682659795,P11)
p(11.354369679185247,13.026506920872281,P12)
p(12.343010102051561,13.176807001626475,P13)
p(11.978853578742388,12.245469239838961,P14)
p(12.967494001608701,12.395769320593157,P15)
p(12.03227815618975,12.041691190122894,P16)
p(12.806526734810973,11.408809575203472,P17)
p(11.871310889392023,11.05473144473321,P18)
p(12.645559468013245,10.42184982981379,P19)
p(11.661699467381704,10.600789761515188,P20)
p(11.99866294109261,9.6592720413502,P21)
p(11.014802940461067,9.8382119730516,P22)
p(11.351766414171975,8.89669425288661,P23)
p(10.854117655745695,9.76407289756077,P24)
p(10.351770093970897,8.899407108264747,P25)
nolabel()
p(9.854121335544617,9.766785752938906,P26)
p(9.351773773769818,8.902119963642884,P27)
p(8.854125015343538,9.769498608317043,P28)
p(8.35177745356874,8.904832819021019,P29)
p(8.779891809342127,9.808557388998365,P30)
p(7.783186195830885,9.727453011834255,P31)
p(8.211300551604271,10.631177581811599,P32)
p(7.21459493809303,10.55007320464749,P33)
p(8.079410606948755,11.052162697568447,P34)
p(7.212180516678097,11.550070289927858,P35)
p(8.076996185533822,12.052159782848815,P36)
p(7.209766095263165,12.550067375208226,P37)
p(8.07458176411889,13.052156868129181,P38)
p(9.208006165115513,10.71228195897571,P39)
p(8.989874582722976,12.649367771688148,P40)
p(9.839951161227136,9.937268719160103,P41)
p(10.491391428884553,10.695968645135078,P42)
p(8.876672889200515,11.655795742802649,P43)
p(9.508617885312143,10.88078250298705,P44)
p(9.188499711198359,12.772773169057892,P45)
p(9.613303446765597,11.867487696818268,P46)
p(10.184901795618487,12.688021259561836,P47)
p(10.67783946675016,10.779729693216588,P48)
p(10.990213155876075,12.095169159084767,P49)
p(11.097062310770799,11.687613059652634,P50)
p(10.101200829753529,11.596729009203246,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16) s(P50,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18) s(P50,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39) s(P43,P39)
s(P4,P40) s(P38,P40) s(P46,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42) s(P51,P42)
s(P40,P43) s(P34,P43) s(P44,P43)
s(P41,P44) s(P42,P44) s(P46,P44)
s(P6,P45) s(P3,P45)
s(P45,P46)
s(P45,P47) s(P46,P47) s(P49,P47) s(P10,P47)
s(P22,P48) s(P20,P48)
s(P14,P49) s(P12,P49) s(P51,P49)
s(P48,P50)
s(P48,P51) s(P50,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
color(#32CD32) m(P45,P45,MA15) m(P45,P46,MB15) b(P45,MA15,MB15)
color(#ADD8E6) m(P48,P48,MA16) m(P48,P50,MB16) b(P48,MA16,MB16)
pen(2)
color(red) s(P39,P43) abstand(P39,P43,A0) print(abs(P39,P43):,7.21,17.549) print(A0,8.15,17.549)
color(red) s(P47,P49) abstand(P47,P49,A1) print(abs(P47,P49):,7.21,17.332) print(A1,8.15,17.332)
color(red) s(P47,P10) abstand(P47,P10,A2) print(abs(P47,P10):,7.21,17.115) print(A2,8.15,17.115)
color(red) s(P18,P50) abstand(P18,P50,A3) print(abs(P18,P50):,7.21,16.899) print(A3,8.15,16.899)
color(red) s(P40,P46) abstand(P40,P46,A4) print(abs(P40,P46):,7.21,16.682) print(A4,8.15,16.682)
color(red) s(P16,P50) abstand(P16,P50,A5) print(abs(P16,P50):,7.21,16.466) print(A5,8.15,16.466)
color(red) s(P43,P44) abstand(P43,P44,A6) print(abs(P43,P44):,7.21,16.249) print(A6,8.15,16.249)
color(red) s(P44,P46) abstand(P44,P46,A7) print(abs(P44,P46):,7.21,16.032) print(A7,8.15,16.032)
color(red) s(P42,P51) abstand(P42,P51,A8) print(abs(P42,P51):,7.21,15.816) print(A8,8.15,15.816)
color(red) s(P49,P51) abstand(P49,P51,A9) print(abs(P49,P51):,7.21,15.599) print(A9,8.15,15.599)
print(min=0.9816404316889379,7.21,15.382)
print(max=1.019208270674712,7.21,15.166)
\geooff
\geoprint()
Eine Lösung könnte allerdings erzielt werden, wenn das Programm 2 Knoten auf Abstand 0, also überlagern könnte. Geht das? Dann könnte man alle innenliegenden Dreiecke mit zusätzlichem Winkel integrieren. Ich habe das mal mit dem ersten Graphen probiert. Es sind dann 9 einstellbare Winkel, aber nur 7 Abstände von denen 5 auf 0 gebracht werden müssen. Klappt aber nicht.
\geo
ebene(388.16,518.21)
x(7.11,13.27)
y(9.41,17.64)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''6.9190808847381655''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''25.303475224947388''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''10.22''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''30.7''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''9.05''/>
#<Winkel size=''18'' color=''limegreen'' id=''sechsterWinkel'' value=''165.8''/>
#<Winkel size=''18'' color=''LightBlue'' id=''siebenterWinkel'' value=''-98.9''/>
#<Winkel size=''18'' color=''LightCoral'' id=''achterWinkel'' value=''184.9''/>
#<Winkel size=''18'' color=''LightCyan'' id=''neunterWinkel'' value=''145.92''/>
#<Feinjustieren Anzahl=''9''/>
#<Rechenweg>
#P[1]=[-83.18659238651122,331.18740662176486];
#P[2]=[-132.6260538299262,292.21619181552455]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,18,16); N(41,14,12); N(42,6,3); N(43,24,22); N(44,4,38);
#M(45,43,43,sechsterWinkel,1); M(47,44,44,siebenterWinkel,1); N(49,10,42);
#M(50,40,40,achterWinkel,1);
#M(52,41,41,neunterWinkel,1); N(54,34,39); N(55,39,28); N(56,51,48);
#
#RA(42,48); RA(20,51); RA(45,56); RA(50,53); RA(54,47); RA(49,52); RA(46,55);
#
#
#</Rechenweg>
#
#<Knopf id=''start_neunterWinkel'' color=''LightCyan''/>
#<animate a0:href=''#neunterWinkel'' xmlns:a0=''http://www.w3.org/1999/xlink''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_neunterWinkel.click+0s'' end=''stop_all_angles.click+0s''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.678581370200419,15.260910400459826,P1)
p(7.893235757111212,14.641852836091587,P2)
p(8.822028140803631,14.271252366589788,P3)
p(8.036682527714426,13.652194802221548,P4)
p(7.107890144022005,14.022795271723346,P5)
p(8.94020503212688,14.295740436401584,P6)
p(9.645254909007802,15.004898155890132,P7)
p(9.906878570934262,14.03972819183189,P8)
p(10.611928447815183,14.748885911320437,P9)
p(10.873552109741643,13.783715947262195,P10)
p(11.578601986622564,14.492873666750743,P11)
p(11.244299987928214,13.550407660112327,P12)
p(12.22765049122753,13.732126640026316,P13)
p(11.89334849253318,12.789660633387898,P14)
p(12.876698995832497,12.971379613301886,P15)
p(11.941192679206845,12.61806964803979,P16)
p(12.714921242846845,11.984552395072214,P17)
p(11.779414926221193,11.631242429810117,P18)
p(12.553143489861194,10.997725176842541,P19)
p(11.564413479938544,11.1474347873502,P20)
p(11.929126159009563,10.216314676019316,P21)
p(10.940396149086913,10.366024286526974,P22)
p(11.305108828157932,9.43490417519609,P23)
p(10.79847452060009,10.297065226511553,P24)
p(10.30513830178632,9.42722652007999,P25)
nolabel()
p(9.798503994228478,10.289387571395455,P26)
p(9.30516777541471,9.419548864963893,P27)
p(8.798533467856867,10.281709916279356,P28)
p(8.305197249043097,9.411871209847794,P29)
p(8.706442826868141,10.3278417258994,P30)
p(7.712566301937386,10.217345331426252,P31)
p(8.11381187976243,11.13331584747786,P32)
p(7.119935354831675,11.02281945300471,P33)
p(7.983946242946516,11.526292575642854,P34)
p(7.115920284561785,12.022811392577589,P35)
p(7.979931172676626,12.526284515215732,P36)
p(7.111905214291895,13.022803332150467,P37)
p(7.975916102406736,13.526276454788611,P38)
p(9.107688404693185,11.243812241951007,P39)
p(11.005686362581192,12.26475968277769,P40)
p(10.909997989233863,12.607941653473912,P41)
p(9.083651802730088,13.306082402531546,P42)
p(10.433761841529071,11.228185337842438,P43)
p(8.904708486099155,13.155675985286813,P44)
p(9.464316491633932,11.473492723721241,P45)
p(9.736596738674507,10.511274730191955,P46)
p(8.749998099799686,12.167716119517422,P47)
p(9.682951634625176,12.527712927637474,P48)
p(10.075769269065368,13.180771058302604,P49)
p(10.009341066390286,12.179342759640324,P50)
p(10.581486939835802,11.359190883766551,P51)
p(10.08174200513626,13.168291566302056,P52)
p(10.010592737667492,12.170825886822978,P53)
p(8.744525352313046,12.175537843931515,P54)
p(9.77469403349509,10.498759565191452,P55)
p(9.59643742062663,11.531462311187871,P56)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P51,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P18,P40) s(P16,P40)
s(P14,P41) s(P12,P41)
s(P6,P42) s(P3,P42) s(P48,P42)
s(P24,P43) s(P22,P43)
s(P4,P44) s(P38,P44)
s(P43,P45) s(P56,P45)
s(P43,P46) s(P45,P46) s(P55,P46)
s(P44,P47)
s(P44,P48) s(P47,P48)
s(P10,P49) s(P42,P49) s(P52,P49)
s(P40,P50) s(P53,P50)
s(P40,P51) s(P50,P51)
s(P41,P52)
s(P41,P53) s(P52,P53)
s(P34,P54) s(P39,P54) s(P47,P54)
s(P39,P55) s(P28,P55)
s(P51,P56) s(P48,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
color(#32CD32) m(P43,P43,MA15) m(P43,P45,MB15) b(P43,MA15,MB15)
color(#ADD8E6) m(P44,P44,MA16) m(P44,P47,MB16) b(P44,MA16,MB16)
color(#F08080) m(P40,P40,MA17) m(P40,P50,MB17) b(P40,MA17,MB17)
color(#E0FFFF) m(P41,P41,MA18) m(P41,P52,MB18) b(P41,MA18,MB18)
pen(2)
color(red) s(P42,P48) abstand(P42,P48,A0) print(abs(P42,P48):,7.11,17.644) print(A0,8.14,17.644)
color(red) s(P20,P51) abstand(P20,P51,A1) print(abs(P20,P51):,7.11,17.405) print(A1,8.14,17.405)
color(red) s(P45,P56) abstand(P45,P56,A2) print(abs(P45,P56):,7.11,17.167) print(A2,8.14,17.167)
color(red) s(P50,P53) abstand(P50,P53,A3) print(abs(P50,P53):,7.11,16.929) print(A3,8.14,16.929)
color(red) s(P54,P47) abstand(P54,P47,A4) print(abs(P54,P47):,7.11,16.691) print(A4,8.14,16.691)
color(red) s(P49,P52) abstand(P49,P52,A5) print(abs(P49,P52):,7.11,16.452) print(A5,8.14,16.452)
color(red) s(P46,P55) abstand(P46,P55,A6) print(abs(P46,P55):,7.11,16.214) print(A6,8.14,16.214)
print(min=0.008608356612792644,7.11,15.976)
print(max=1.0054776116890103,7.11,15.737)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
StefanVogel
Senior Dabei seit: 26.11.2005 Mitteilungen: 3757
Herkunft: Raun
Beitrag No.1338, eingetragen 2018-08-25
In der Eingabe zu #1327 ist der gleiche Fehler L(...)
drin, mit dem wir schon den 4/4 mit 108 Kanten beinahe übersehen hätten. Die Eingabe L(18,17,11)
bedeutet, dass der Punkt P18 so eingezeichnet wird, dass P18, P17, P11 ein gleichseitiges Dreieck bilden. Da aber der Abstand P17-P11 nicht 1 ist, haben dann die neuen Kanten P18-P17 und P18-P11 auch nicht Länge 1. Richtig wäre Eingabe N(18,17,11)
, wie in den Graphen unmittelbar davor. Gleicher Fehler auch im nächsten #1328. Nach Korrektur lassen sich beide so zurechtziehen, dass wie gewohnt nur zwei Kanten ungleich 1 übrigbleiben.
Ich habe das nur zufällig gefunden bei anderweitigen Experimenten (neue Eingabe "Rahmen zuerst" dann "Feinjustieren(5)" ging nicht). Außerdem hatte ich in der aktuellen Programmversion die Toleranz, ab der unpassende Kanten ausgegeben werden, sehr grob eingestellt, wegen der vielen angenäherten Kanten beim Einlesen von .dxf-Files. Deshalb war das nicht direkt zu sehen. Ich weiß jetzt nicht, ob wegen dieser Fehler die L-Funktion lieber ganz weg soll, denn sie kann durch die anderen N und Q ersetzt werden. Meine Begründungen fürs Beibehalten sind, diese Funktion rechnet schneller als N (hab ich aber nie nachgemessen), die Eingabe wird etwas übersichtlicher (man sieht gleich, dass es gleichseitige Dreiecke werden), und bei irgendeinem Button zu "neue Eingabe" würde der Fehler automatisch ausgebessert (dafür war "neue Eingabe" auch ursprünglich gedacht).
[Die Antwort wurde nach Beitrag No.1336 begonnen.]
Notiz Profil
Quote
Link
StefanVogel
Senior Dabei seit: 26.11.2005 Mitteilungen: 3757
Herkunft: Raun
Beitrag No.1339, eingetragen 2018-08-25
2018-08-20 23:29 - Slash in Beitrag No. 1328 schreibt:
@Stefan: Ich habe hier eine Vorkonstruktion von dir übernommen mit der Winkeleingabe "M(7,1,3,blauerWinkel,3,gruenerWinkel,2);". Was passiert hier? Der blaue Winkel ist im Programm nicht zu sehen, sitzt aber bei P12.
Warum der Winkel in P1 nicht blau gezeichnet wird ist mir jetzt ein Rätsel, um es nicht gleich Fehler zu nennen. M(7,1,3,blauerWinkel)
bedeutet, P7 wird so eingezeichnet, dass von P7 über P1 nach P3 der angegebene Winkel eingeschlossen wird. M(7,1,3,blauerWinkel,3)
fügt dann gleich ein Rahmenstück der Länge 3 an über P8, P10 nach P12. Bei Eingabe M(7,1,3,blauerWinkel,3,gruenerWinkel)
folgt dann in P12 der grüne Winkel nach P13. Dann folgt mit M(7,1,3,blauerWinkel,3,gruenerWinkel,2)
wieder ein Rahmenstück der Länge 2 über P14 nach 16. So kann man das beliebig fortsetzen M(7,1,3,blauerWinkel,3,gruenerWinkel,2,orangerWinkel,3,vierterWinkel,2...)
.
2018-08-24 05:37 - Slash in Beitrag No. 1335 schreibt:
Hier noch mal die Graphen aus #1334 als "faire" Version. Darunter verstehe ich, dass die Hülle mit ihren Rauten bzw. angrenzenden Kanten nur aus Einheitskanten besteht und die noch falschen Kanten möglichst im Zentrum liegen. Diese Versionen sind minimal schlechter.
Ich bin sehr für die "faire" Version. Das macht dem Button zur neuen Eingabe "Rahmen zuerst" alles viel einfacher. Es ist manchmal aufwändig, mit zusätzlichen Wiederholungsschritten den Rahmen zurechzuziehen und auch die obige Eingabe M(7,1,3,blauerWinkel,3,gruenerWinkel,2)
ist auf alle Rahmenkanten 1 ausgelegt. Wenn dadurch der mögliche Rekord nicht ganz erreicht wird, das kann man ja als Regel festlegen und dann ist die innere Kante eben der Rekord.
2018-08-19 20:27 - Slash in Beitrag No. 1323 schreibt:
Hatten wir diesen fast 108er schon gehabt?
Diese Frage gilt wohl generell für jeden neuen Graphen. Ich habe versucht, die vorhandenen Graphen (halb-)automatisch aus dem Thread auszulesen. Das könnte dann etwa so aussehen, für die Thread-Seiten 30, 31, 32 und 34 alle 4-regulären Graphen:
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.87940176283649396094, maximal 1.05340179871071515372 #1335-3
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.98164043168893810876, maximal 1.01920827067471209126 #1337-1
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.98661611357664891209, maximal 1.03261103133364118278 #1334-3
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.98879264262632593496, maximal 1.00092420263604298114 #1334-1
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.99190953071800802565, maximal 1.01619002481655029690 #1334-2
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.99224301776848733425, maximal 1.04030776647063238904 #1335-2
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.99224301776848733425, maximal 1.04030776647063238904 #1336-1
51 Knoten, 51×Grad 4, 102 Kanten, minimal 0.99999999999999611422, maximal 1.13004930922239021918 #1335-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.96826227448756196914, maximal 1.00000000000000777156 #1166-3
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.97147866007780969699, maximal 1.00351679609957522565 #1326-2
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.97304450234015515964, maximal 1.00000000000005662137 #1166-2
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.98622600077368560711, maximal 1.00000000000000555112 #1323-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.98766236793824302431, maximal 1.00000000000001798561 #1166-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99039871941928780963, maximal 1.00000000000017430501 #1162-4
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99763133703926543117, maximal 1.00000000000001465494 #1326-3
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999988076205, maximal 1.00394924705582888613 #1169-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999992283950, maximal 1.03963318847879149232 #1171-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999995803357, maximal 1.00246738959050518680 #1162-2
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999997424283, maximal 1.01613056018802216940 #1162-3
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999999134026, maximal 1.00394924705582777591 #1165-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999999422684, maximal 1.05871356101351765666 #1326-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999999511502, maximal 1.03963318847879637730 #1163-1
54 Knoten, 54×Grad 4, 108 Kanten, minimal 0.99999999999999733546, maximal 1.05871356101351743462 #1162-1
55 Knoten, 55×Grad 4, 110 Kanten, minimal 0.99999999999999078515, maximal 1.16808102801497448731 #1324-1
56 Knoten, 56×Grad 4, 112 Kanten, minimal 0.91000165658094245291, maximal 1.00390141680946931579 #1204-2
56 Knoten, 56×Grad 4, 112 Kanten, minimal 0.99443188172718388618, maximal 1.00000000000003574918 #1240-1
56 Knoten, 56×Grad 4, 112 Kanten, minimal 0.99492209008130794157, maximal 1.00390141680946864966 #1328-1
56 Knoten, 56×Grad 4, 112 Kanten, minimal 0.99999999999998379074, maximal 1.01636527422676703480 #1327-1
56 Knoten, 56×Grad 4, 112 Kanten, minimal 0.99999999999999433786, maximal 1.13943260163848680833 #1172-1
59 Knoten, 59×Grad 4, 118 Kanten, minimal 0.99862156589306694254, maximal 1.16506496607696474754 #1331-2
59 Knoten, 59×Grad 4, 118 Kanten, minimal 0.99999999999999367173, maximal 1.08044578691054682373 #1331-1
60 Knoten, 60×Grad 4, 120 Kanten, minimal 0.99999999999996658229, maximal 1.01049721352629706672 #1325-1
61 Knoten, 61×Grad 4, 122 Kanten, minimal 0.99999999999994404476, maximal 1.00301887476434914426 #1329-1
62 Knoten, 62×Grad 4, 124 Kanten, minimal 0.99999999999999245048, maximal 1.04209566156391830738 #1332-1
62 Knoten, 62×Grad 4, 124 Kanten, minimal 0.99999999999999733546, maximal 1.05724432045178029504 #1330-1
Als zusätzliches Unterscheidungsmerkmal könnte man auch noch die Anzahl der Dreiecke verwenden oder eine Beschreibung wie die von haribo in Beitrag No.371 .
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1340, vom Themenstarter, eingetragen 2018-08-25
Ich hatte mich auch schon über den Nutzen von L gegenüber N gewundert, aber noch nie drüber nachgedacht. Ich werde dann jetzt immer N verwenden. Danke für den Hinweis. -----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1341, vom Themenstarter, eingetragen 2018-08-25
Ich habe mal auf den Button "vary angles randomly" gedrückt, und erhielt diese völlig neue (bessere?) Eingabe. Es werden jetzt sogar im fed alle Kanten gezeichnet. Ich habe daraus gelernt, dass man statt "zumachen" auch Q(...) und H(...) verwenden kann.
\geo
ebene(423.99,568.87)
x(7.92,14.05)
y(8.17,16.39)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blue_angle'' value=''124.8074835368699''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''145.48628810882968''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''66.10900915541856''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''128.78612228540212''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''143.61084933960888''/>
#<Feinjustieren Anzahl=''5'' stretch_factor=''1'' Zunehmen=''1'' Warten=''0.5''
#Wiederholen=''0''/>
#<Rechenweg>
#P[23]=[143.6262666913732,-126.52056982151382];
#P[25]=[74.37858394167262,-126.4327594769251]; D=ab(23,25); A(25,23);
#N(24,25,23); N(26,25,24); N(27,25,26); N(28,27,26); N(29,27,28);
#M(31,29,27,blue_angle); N(30,31,29); N(32,31,30); N(33,31,32);
#M(35,33,31,green_angle); N(34,35,33); N(36,35,34); N(37,35,36); N(38,37,36);
#N(5,37,38); M(4,5,37,orange_angle); N(2,5,4); N(3,2,4); N(1,2,3);
#M(7,1,2,fourth_angle); N(6,7,1); N(8,7,6); N(9,7,8); N(10,9,8); N(11,9,10);
#M(13,11,9,fifth_angle); N(12,13,11); N(14,13,12); N(15,13,14);
#Q(19,15,23,2*D,2*D); A(19,15); A(19,23); H(21,23,19,2); A(21,23); N(22,23,21);
#H(17,15,19,2); A(17,15); N(16,17,15); A(17,19); N(18,19,17); A(18,16);
#A(21,19); N(20,21,19); A(22,20); N(39,32,30); N(40,4,38); N(41,39,28);
#N(42,41,24); N(43,40,34); N(45,6,3); Q(47,10,45,jam(1.0010959617475572)*D,D);
#N(48,22,20); N(49,14,12); Q(50,48,16,D,jam(1.0069607843774724)*D); N(44,41,42);
#N(46,47,45); N(51,48,50);
#A(43,39); R(43,39,''green'',jam(1.0116458055162656)*D);
#A(49,47); R(49,47,''green'',jam(0.9975713542132087)*D);
#A(50,18); R(50,18,''green'',jam(1.0035590788148676)*D);
#A(44,43); R(44,43,''green'',jam(1.0052738119187066)*D);
#A(46,40); R(46,40,''green'',jam(1.001278636236494)*D);
#A(46,44); R(46,44,''green'',jam(1.0156776327028696)*D);
#A(51,42); R(51,42,''green'',jam(0.9805463265412891)*D);
#A(51,49); R(51,49,''green'',jam(1.0285685555581083)*D);
#</Rechenweg>
#
#
#<Knopf id=''stop_all_angles'' color=''LightGrey''/>
#
#<Knopf id=''start_blue_angle'' color=''blue''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#blue_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_blue_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_green_angle'' color=''green''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#green_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_green_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_orange_angle'' color=''orange''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#orange_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_orange_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_fourth_angle'' color=''violet''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#fourth_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_fourth_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_fifth_angle'' color=''aqua''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#fifth_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_fifth_angle.click+0s'' end=''stop_all_angles.click+0''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(9.534193435641209,14.005179716980354,P1)
p(8.72857654662786,13.41274286115819,P2)
p(9.644450358414709,13.011276597465924,P3)
p(8.83883346940136,12.418839741643758,P4)
p(7.922959657614511,12.820306005336024,P5)
p(9.794971732580391,13.039781001502911,P6)
p(10.500642396495131,13.748320989146608,P7)
p(10.761420693434314,12.782922273669163,P8)
p(11.467091357349055,13.491462261312858,P9)
p(11.727869654288238,12.526063545835415,P10)
p(12.433540318202978,13.23460353347911,P11)
p(12.070729769007333,12.302740611482342,P12)
p(13.059152006899152,12.454468920116312,P13)
p(12.696341457703507,11.522605998119545,P14)
p(13.684763695595327,11.674334306753515,P15)
p(12.750060397312463,11.318905348761716,P16)
p(13.525222553315427,10.687143026443552,P17)
p(12.590519255032563,10.331714068451753,P18)
p(13.365681411035526,9.69995174613359,P19)
p(12.381563905395486,9.877470013060764,P20)
p(12.719887329420786,8.936440119403928,P21)
p(11.735769823780746,9.113958386331102,P22)
p(12.074093247806045,8.172928492674266,P23)
p(11.575191822692185,9.039587230597883,P24)
p(11.074094051795502,8.174196553503212,P25)
p(10.575192626681641,9.040855291426828,P26)
p(10.074094855784958,8.175464614332157,P27)
p(9.575193430671098,9.042123352255775,P28)
p(9.074095659774414,8.176732675161102,P29)
p(9.500903870137861,9.081074840254796,P30)
p(8.504316476271576,8.998530510426466,P31)
p(8.931124686635025,9.902872675520161,P32)
p(7.93453729276874,9.820328345691832,P33)
p(8.798626641588921,10.323666797685634,P34)
p(7.930678081050663,10.820320898906562,P35)
p(8.794767429870845,11.323659350900364,P36)
p(7.926818869332587,11.820313452121294,P37)
p(8.790908218152767,12.323651904115096,P38)
p(9.927712080501308,9.985417005348491,P39)
p(9.706782029939617,11.922185640422832,P40)
p(10.560776153869858,9.211317606685748,P41)
p(11.211119574203211,9.970957939757337,P42)
p(9.595015964488717,10.92845109507703,P43)
p(10.228080037857266,10.154351696414288,P44)
p(9.905228655353893,12.045877881988481,P45)
p(10.331339901310542,11.14120710979051,P46)
p(10.901752149116945,11.962565659726193,P47)
p(11.397446399755447,10.05498827998794,P48)
p(11.707919219811686,11.370877689485575,P49)
p(11.815357099029603,10.963476390769905,P50)
p(10.819627966419212,10.87115361746366,P51)
nolabel()
s(P2,P1) s(P3,P1)
s(P5,P2) s(P4,P2)
s(P2,P3) s(P4,P3)
s(P5,P4)
s(P37,P5) s(P38,P5)
s(P7,P6) s(P1,P6)
s(P1,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P13,P12) s(P11,P12)
s(P11,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P17,P16) s(P15,P16)
s(P15,P17) s(P19,P17)
s(P19,P18) s(P17,P18) s(P16,P18)
s(P21,P20) s(P19,P20)
s(P23,P21) s(P19,P21)
s(P23,P22) s(P21,P22) s(P20,P22)
s(P25,P24) s(P23,P24)
s(P23,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29)
s(P31,P30) s(P29,P30)
s(P29,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33)
s(P35,P34) s(P33,P34)
s(P33,P35)
s(P35,P36) s(P34,P36)
s(P35,P37) s(P36,P37)
s(P37,P38) s(P36,P38)
s(P32,P39) s(P30,P39)
s(P4,P40) s(P38,P40)
s(P39,P41) s(P28,P41)
s(P41,P42) s(P24,P42)
s(P40,P43) s(P34,P43) s(P39,P43)
s(P41,P44) s(P42,P44) s(P43,P44)
s(P6,P45) s(P3,P45)
s(P47,P46) s(P45,P46) s(P40,P46) s(P44,P46)
s(P10,P47) s(P45,P47)
s(P22,P48) s(P20,P48)
s(P14,P49) s(P12,P49) s(P47,P49)
s(P48,P50) s(P16,P50) s(P18,P50)
s(P48,P51) s(P50,P51) s(P42,P51) s(P49,P51)
pen(2)
color(#0000FF) m(P27,P29,MA10) m(P29,P31,MB10) b(P29,MA10,MB10)
color(#008000) m(P31,P33,MA11) m(P33,P35,MB11) b(P33,MA11,MB11)
color(#FFA500) m(P37,P5,MA12) m(P5,P4,MB12) b(P5,MA12,MB12)
color(#EE82EE) m(P2,P1,MA13) m(P1,P7,MB13) b(P1,MA13,MB13)
color(#00FFFF) m(P9,P11,MA14) m(P11,P13,MB14) b(P11,MA14,MB14)
pen(2)
color(#008000) s(P43,P39) abstand(P43,P39,A18) print(abs(P43,P39):,7.92,16.388) print(A18,8.86,16.388)
color(#008000) s(P49,P47) abstand(P49,P47,A18) print(abs(P49,P47):,7.92,16.171) print(A18,8.86,16.171)
color(#008000) s(P50,P18) abstand(P50,P18,A18) print(abs(P50,P18):,7.92,15.955) print(A18,8.86,15.955)
color(#008000) s(P44,P43) abstand(P44,P43,A18) print(abs(P44,P43):,7.92,15.738) print(A18,8.86,15.738)
color(#008000) s(P46,P40) abstand(P46,P40,A18) print(abs(P46,P40):,7.92,15.521) print(A18,8.86,15.521)
color(red) s(P46,P44) abstand(P46,P44,A18) print(abs(P46,P44):,7.92,15.305) print(A18,8.86,15.305)
color(red) s(P51,P42) abstand(P51,P42,A18) print(abs(P51,P42):,7.92,15.088) print(A18,8.86,15.088)
color(red) s(P51,P49) abstand(P51,P49,A18) print(abs(P51,P49):,7.92,14.872) print(A18,8.86,14.872)
print(min=0.9816404316889402,7.92,14.655)
print(max=1.0192082706747116,7.92,14.438)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
StefanVogel
Senior Dabei seit: 26.11.2005 Mitteilungen: 3757
Herkunft: Raun
Beitrag No.1342, eingetragen 2018-08-25
"zumachen" wird im Programm dann auch in Q(...) und H(...) zerlegt, ist sozusagen eine Abkürzung für die vielen Q(...) und H(...). Diese Abkürzung lässt sich leider nicht im Button "vary angles randomly" und ähnlichen anwenden, weil die Rahmenkanten eines vorliegenden Graphen auch Kanten ungleich 1 haben können. Nur wenn von vornherein ausgemacht ist, dass der Rahmen nur aus Kanten 1 bestehen darf, lässt sich diese Abkürzung verwenden. Deine Bezeichnung "faire" Version ist aus Sicht des Programms voll zutreffend. Vergleiche selbst, wie einfach die Eingabe zum letzten Graph wird.
\geo
ebene(313.16,456.45)
x(8.84,15.11)
y(10,19.13)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Anfang für einen neuen, noch unbenannten Streichholzgraph</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blue_angle'' value=''4.8074835368699''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''25.48628810882968''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''6.10900915541856''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''8.78612228540212''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''23.61084933960888''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[0,0]; P[2]=[50,0]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,3,2);
#L(5,4,2); L(6,4,5); L(7,6,5);
#M(8,1,3,blue_angle,2,green_angle,3,orange_angle,2,fourth_angle,3,fifth_angle,2,
#''zumachen'',7,2,2);L(39,10,8); N(40,39,3); N(41,40,6); L(42,40,41); N(43,12,39);
#N(44,16,43); N(45,44,42); N(46,22,20); N(47,26,46); L(48,30,28); L(49,34,32);
#L(50,38,36); N(51,50,49); RA(43,42); RA(45,46); RA(45,47); RA(47,48);
#RA(48,51); RA(51,41); RA(49,50); RA(18,44);
#</Rechenweg>
#<Knopf id=''stop_all_angles'' color=''LightGrey''/>
#
#<Knopf id=''start_blue_angle'' color=''blue''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#blue_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_blue_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_green_angle'' color=''green''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#green_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_green_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_orange_angle'' color=''orange''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#orange_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_orange_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_fourth_angle'' color=''violet''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#fourth_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_fourth_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#<Knopf id=''start_fifth_angle'' color=''aqua''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#fifth_angle''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_fifth_angle.click+0s'' end=''stop_all_angles.click+0''/>
#
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(10,10,P1)
p(11,10,P2)
p(10.5,10.86602540378444,P3)
p(11.5,10.86602540378444,P4)
p(12,10,P5)
p(12.5,10.86602540378444,P6)
p(13,10,P7)
p(10.425661106338627,10.904882656785164,P8)
p(9.429179184949406,10.821074659884822,P9)
p(9.854840291288035,11.725957316669986,P10)
p(8.858358369898813,11.642149319769645,P11)
p(9.721808760225594,12.146583084940586,P12)
p(8.853231109897536,12.642136175285696,P13)
p(9.716681500224315,13.146569940456637,P14)
p(8.848103849896255,13.642123030801745,P15)
p(9.711554240223034,14.146556795972689,P16)
p(8.842976589894976,14.642109886317797,P17)
p(9.759358748972067,14.241805329105159,P18)
p(9.647841585230347,15.235567837047073,P19)
p(10.56422374430744,14.835263279834436,P20)
p(10.452706580565719,15.829025787776349,P21)
p(10.714708852137313,14.863958531212681,P22)
p(11.419480476896208,15.573392782524746,P23)
p(11.6814827484678,14.608325525961078,P24)
p(12.386254373226695,15.31775977727314,P25)
p(12.64825664479829,14.352692520709471,P26)
p(13.353028269557184,15.062126772021536,P27)
p(12.991399670926725,14.129804533386968,P28)
p(13.979628713412668,14.28278609955531,P29)
p(13.618000114782209,13.350463860920742,P30)
nolabel()
p(14.606229157268151,13.503445427089083,P31)
p(13.671977316015983,13.146831494219187,P32)
p(14.447939961850876,12.516052632597372,P33)
p(13.51368812059871,12.159438699727474,P34)
p(14.289650766433603,11.52865983810566,P35)
p(13.305308948052947,11.70493004145003,P36)
p(13.644825383216801,10.76432991905283,P37)
p(12.660483564836145,10.9406001223972,P38)
p(10.851322212677255,11.809765313570328,P39)
p(11.485367382194118,11.03646930102899,P40)
p(12.134747009507764,11.796933698374447,P41)
p(11.151475709076152,11.979080753655406,P42)
p(10.517430539559287,12.752376766196743,P43)
p(10.627936399300127,13.746252238760052,P44)
p(11.261981568816992,12.972956226218715,P45)
p(10.82622601587904,13.870196023270768,P46)
p(11.822854353413334,13.78814752039819,P47)
p(12.629771072296268,13.197482294752401,P48)
p(12.737725474763817,12.79021756134929,P49)
p(12.320967129672292,11.8812002447944,P50)
p(11.7421142136016,12.696632217160248,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7) s(P37,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16) s(P14,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P44,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20)
s(P19,P21) s(P20,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P29,P30) s(P28,P30)
s(P29,P31) s(P30,P31) s(P33,P31)
s(P33,P32) s(P31,P32)
s(P35,P33)
s(P35,P34) s(P33,P34) s(P32,P34)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P7,P38) s(P37,P38)
s(P10,P39) s(P8,P39)
s(P39,P40) s(P3,P40)
s(P40,P41) s(P6,P41)
s(P40,P42) s(P41,P42)
s(P12,P43) s(P39,P43) s(P42,P43)
s(P16,P44) s(P43,P44)
s(P44,P45) s(P42,P45) s(P46,P45) s(P47,P45)
s(P22,P46) s(P20,P46)
s(P26,P47) s(P46,P47) s(P48,P47)
s(P30,P48) s(P28,P48) s(P51,P48)
s(P34,P49) s(P32,P49) s(P50,P49)
s(P38,P50) s(P36,P50)
s(P50,P51) s(P49,P51) s(P41,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P8,MB11) f(P1,MA11,MB11)
color(#FFA500) m(P3,P1,MA12) m(P1,P8,MB12) f(P1,MA12,MB12)
color(#EE82EE) m(P3,P1,MA13) m(P1,P8,MB13) f(P1,MA13,MB13)
color(#00FFFF) m(P3,P1,MA14) m(P1,P8,MB14) f(P1,MA14,MB14)
pen(2)
color(red) s(P43,P42) abstand(P43,P42,A0) print(abs(P43,P42):,8.84,19.129) print(A0,10.14,19.129)
color(red) s(P45,P46) abstand(P45,P46,A1) print(abs(P45,P46):,8.84,18.829) print(A1,10.14,18.829)
color(red) s(P45,P47) abstand(P45,P47,A2) print(abs(P45,P47):,8.84,18.529) print(A2,10.14,18.529)
color(red) s(P47,P48) abstand(P47,P48,A3) print(abs(P47,P48):,8.84,18.229) print(A3,10.14,18.229)
color(red) s(P48,P51) abstand(P48,P51,A4) print(abs(P48,P51):,8.84,17.929) print(A4,10.14,17.929)
color(red) s(P51,P41) abstand(P51,P41,A5) print(abs(P51,P41):,8.84,17.629) print(A5,10.14,17.629)
color(red) s(P49,P50) abstand(P49,P50,A6) print(abs(P49,P50):,8.84,17.329) print(A6,10.14,17.329)
color(red) s(P18,P44) abstand(P18,P44,A7) print(abs(P18,P44):,8.84,17.029) print(A7,10.14,17.029)
print(min=0.9816404316889433,8.84,16.729)
print(max=1.0192082706747203,8.84,16.429)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
Anschließender Button "Feinjustieren(5)" liefert auch sofort das zu erwartende Ergebnis drei Kanten ungleich 1 bei einem unsymmetrischen Graph.
\geo
ebene(320.5,455.28)
x(8.86,15.27)
y(10,19.11)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>#1342</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blue_angle'' value=''4.624156947348702''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''22.27941614561093''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''8.694435398320593''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''8.843769660037813''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''23.566954359419945''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[0,0]; P[2]=[50,0]; D=ab(1,2); A(2,1,Bew(1)); L(3,1,2); L(4,3,2);
#L(5,4,2); L(6,4,5); L(7,6,5);
#M(8,1,3,blue_angle,2,green_angle,3,orange_angle,2,fourth_angle,3,fifth_angle,2,
#''zumachen'',7,2,2);L(39,10,8); N(40,39,3); N(41,40,6); L(42,40,41); N(43,12,39);
#N(44,16,43); N(45,44,42); N(46,22,20); N(47,26,46); L(48,30,28); L(49,34,32);
#L(50,38,36); N(51,50,49); RA(43,42); RA(45,46); RA(45,47); RA(47,48);
#RA(48,51); RA(51,41); RA(49,50); RA(18,44);
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(10,10,P1)
p(11,10,P2)
p(10.5,10.86602540378444,P3)
p(11.5,10.86602540378444,P4)
p(12,10,P5)
p(12.5,10.86602540378444,P6)
p(13,10,P7)
p(10.428554232628233,10.903516059456845,P8)
p(9.431809256097278,10.82289688208382,P9)
p(9.860363488725511,11.726412941540664,P10)
p(8.863618512194554,11.645793764167637,P11)
p(9.755387825225265,12.098284087088178,P12)
p(8.917635054094099,12.6443338050279,P13)
p(9.80940436712481,13.09682412794844,P14)
p(8.971651595993643,13.642873845888163,P15)
p(9.863420909024352,14.095364168808702,P16)
p(9.025668137893186,14.641413886748424,P17)
p(9.936337439306744,14.228277803280829,P18)
p(9.83878913210291,15.223508594485395,P19)
p(10.749458433516468,14.8103725110178,P20)
p(10.651910126312636,15.805603302222366,P21)
p(10.901306205498623,14.837201734851341,P22)
p(11.615268524313604,15.537385858716153,P23)
p(11.864664603499591,14.568984291345128,P24)
p(12.578626922314573,15.269168415209942,P25)
p(12.82802300150056,14.300766847838918,P26)
p(13.54198532031554,15.00095097170373,P27)
p(13.16752004432809,14.073710033716388,P28)
p(14.157766890047764,14.213034060869777,P29)
p(13.783301614060314,13.285793122882437,P30)
nolabel()
p(14.773548459779985,13.425117150035824,P31)
p(13.822427328559089,13.116299090743496,P32)
p(14.565432178664103,12.44701305867617,P33)
p(13.614311047443206,12.138194999383842,P34)
p(14.357315897548219,11.468908967316516,P35)
p(13.381930682389731,11.689416749606004,P36)
p(13.67865794877411,10.734454483658258,P37)
p(12.703272733615622,10.954962265947746,P38)
p(10.857108465256466,11.80703211891369,P39)
p(11.486477001339669,11.029925147005391,P40)
p(12.13023788336237,11.795151862938228,P41)
p(11.145651666698644,11.970051782766145,P42)
p(10.516283130615443,12.747158754674444,P43)
p(10.78620284800003,13.710041585639368,P44)
p(11.415571384083233,12.932934613731067,P45)
p(10.998854512702453,13.841970943646775,P46)
p(11.994461503062816,13.748340175490249,P47)
p(12.79305476834064,13.14646909572905,P48)
p(12.87130619733819,12.807481031451168,P49)
p(12.406545467231242,11.909924531895491,P50)
p(11.872659125456192,12.755480783168021,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7) s(P37,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16) s(P14,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P44,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20)
s(P19,P21) s(P20,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P29,P30) s(P28,P30)
s(P29,P31) s(P30,P31) s(P33,P31)
s(P33,P32) s(P31,P32)
s(P35,P33)
s(P35,P34) s(P33,P34) s(P32,P34)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P7,P38) s(P37,P38)
s(P10,P39) s(P8,P39)
s(P39,P40) s(P3,P40)
s(P40,P41) s(P6,P41)
s(P40,P42) s(P41,P42)
s(P12,P43) s(P39,P43) s(P42,P43)
s(P16,P44) s(P43,P44)
s(P44,P45) s(P42,P45) s(P46,P45) s(P47,P45)
s(P22,P46) s(P20,P46)
s(P26,P47) s(P46,P47) s(P48,P47)
s(P30,P48) s(P28,P48) s(P51,P48)
s(P34,P49) s(P32,P49) s(P50,P49)
s(P38,P50) s(P36,P50)
s(P50,P51) s(P49,P51) s(P41,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P8,MB11) f(P1,MA11,MB11)
color(#FFA500) m(P3,P1,MA12) m(P1,P8,MB12) f(P1,MA12,MB12)
color(#EE82EE) m(P3,P1,MA13) m(P1,P8,MB13) f(P1,MA13,MB13)
color(#00FFFF) m(P3,P1,MA14) m(P1,P8,MB14) f(P1,MA14,MB14)
pen(2)
color(red) s(P43,P42) abstand(P43,P42,A0) print(abs(P43,P42):,8.86,19.106) print(A0,10.16,19.106)
color(red) s(P45,P46) abstand(P45,P46,A1) print(abs(P45,P46):,8.86,18.806) print(A1,10.16,18.806)
color(red) s(P45,P47) abstand(P45,P47,A2) print(abs(P45,P47):,8.86,18.506) print(A2,10.16,18.506)
color(red) s(P47,P48) abstand(P47,P48,A3) print(abs(P47,P48):,8.86,18.206) print(A3,10.16,18.206)
color(red) s(P48,P51) abstand(P48,P51,A4) print(abs(P48,P51):,8.86,17.906) print(A4,10.16,17.906)
color(red) s(P51,P41) abstand(P51,P41,A5) print(abs(P51,P41):,8.86,17.606) print(A5,10.16,17.606)
color(red) s(P49,P50) abstand(P49,P50,A6) print(abs(P49,P50):,8.86,17.306) print(A6,10.16,17.306)
color(red) s(P18,P44) abstand(P18,P44,A7) print(abs(P18,P44):,8.86,17.006) print(A7,10.16,17.006)
print(min=0.9942728255133048,8.86,16.706)
print(max=1.0107473503028244,8.86,16.406)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
2018-08-25 05:01 - Slash in Beitrag No. 1337 schreibt:
Eine Lösung könnte allerdings erzielt werden, wenn das Programm 2 Knoten auf Abstand 0, also überlagern könnte. Geht das? Dann könnte man alle innenliegenden Dreiecke mit zusätzlichem Winkel integrieren. Ich habe das mal mit dem ersten Graphen probiert. Es sind dann 9 einstellbare Winkel, aber nur 7 Abstände von denen 5 auf 0 gebracht werden müssen. Klappt aber nicht.
Das geht neuerdings mit der Programmfunktion zum Zusammenfassen übereinanderliegender Knoten . Eine Eingabe von C(i,j)
bewirkt, dass der Punkt Pj entfernt und alle zu diesem Knoten gehenden Kanten nach Pi umglenkt werden.
\geo
ebene(388.16,518.21)
x(7.11,13.27)
y(9.41,17.64)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''6.9190808847381655''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''25.303475224947388''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''10.22''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''30.7''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''9.05''/>
#<Winkel size=''18'' color=''limegreen'' id=''sechsterWinkel'' value=''165.8''/>
#<Winkel size=''18'' color=''LightBlue'' id=''siebenterWinkel'' value=''-98.9''/>
#<Winkel size=''18'' color=''LightCoral'' id=''achterWinkel'' value=''184.9''/>
#<Winkel size=''18'' color=''LightCyan'' id=''neunterWinkel'' value=''145.92''/>
#<Feinjustieren Anzahl=''9''/>
#<Rechenweg>
#P[1]=[-83.18659238651122,331.18740662176486];
#P[2]=[-132.6260538299262,292.21619181552455]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,18,16); N(41,14,12); N(42,6,3); N(43,24,22); N(44,4,38);
#M(45,43,43,sechsterWinkel,1); M(47,44,44,siebenterWinkel,1); N(49,10,42);
#M(50,40,40,achterWinkel,1);
#M(52,41,41,neunterWinkel,1); N(54,34,39); N(55,39,28); N(56,51,48);
#
#RA(42,48); RA(20,51); RA(45,56); RA(50,53); RA(54,47); RA(49,52); RA(46,55);
#
#
#</Rechenweg>
#
#<Knopf id=''start_neunterWinkel'' color=''LightCyan''/>
#<animate a0:href=''#neunterWinkel'' xmlns:a0=''http://www.w3.org/1999/xlink''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_neunterWinkel.click+0s'' end=''stop_all_angles.click+0s''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
nolabel()
p(8.678581370200419,15.260910400459826,P1)
p(7.893235757111212,14.641852836091587,P2)
p(8.822028140803631,14.271252366589788,P3)
p(8.036682527714426,13.652194802221548,P4)
p(7.107890144022005,14.022795271723346,P5)
p(8.94020503212688,14.295740436401584,P6)
p(9.645254909007802,15.004898155890132,P7)
p(9.906878570934262,14.03972819183189,P8)
p(10.611928447815183,14.748885911320437,P9)
p(10.873552109741643,13.783715947262195,P10)
p(11.578601986622564,14.492873666750743,P11)
p(11.244299987928214,13.550407660112327,P12)
p(12.22765049122753,13.732126640026316,P13)
p(11.89334849253318,12.789660633387898,P14)
p(12.876698995832497,12.971379613301886,P15)
p(11.941192679206845,12.61806964803979,P16)
p(12.714921242846845,11.984552395072214,P17)
p(11.779414926221193,11.631242429810117,P18)
p(12.553143489861194,10.997725176842541,P19)
p(11.564413479938544,11.1474347873502,P20)
p(11.929126159009563,10.216314676019316,P21)
p(10.940396149086913,10.366024286526974,P22)
p(11.305108828157932,9.43490417519609,P23)
p(10.79847452060009,10.297065226511553,P24)
p(10.30513830178632,9.42722652007999,P25)
p(9.798503994228478,10.289387571395455,P26)
p(9.30516777541471,9.419548864963893,P27)
p(8.798533467856867,10.281709916279356,P28)
p(8.305197249043097,9.411871209847794,P29)
p(8.706442826868141,10.3278417258994,P30)
p(7.712566301937386,10.217345331426252,P31)
p(8.11381187976243,11.13331584747786,P32)
p(7.119935354831675,11.02281945300471,P33)
p(7.983946242946516,11.526292575642854,P34)
p(7.115920284561785,12.022811392577589,P35)
p(7.979931172676626,12.526284515215732,P36)
p(7.111905214291895,13.022803332150467,P37)
p(7.975916102406736,13.526276454788611,P38)
p(9.107688404693185,11.243812241951007,P39)
p(11.005686362581192,12.26475968277769,P40)
p(10.909997989233863,12.607941653473912,P41)
p(9.083651802730088,13.306082402531546,P42)
p(10.433761841529071,11.228185337842438,P43)
p(8.904708486099155,13.155675985286813,P44)
p(9.464316491633932,11.473492723721241,P45,label)
p(9.736596738674507,10.511274730191955,P46)
p(8.749998099799686,12.167716119517422,P47,label)
p(9.682951634625176,12.527712927637474,P48)
p(10.075769269065368,13.180771058302604,P49,label)
p(10.009341066390286,12.179342759640324,P50,label)
p(10.581486939835802,11.359190883766551,P51)
p(10.08174200513626,13.168291566302056,P52,label)
p(10.010592737667492,12.170825886822978,P53,label)
p(8.744525352313046,12.175537843931515,P54,label)
p(9.77469403349509,10.498759565191452,P55)
p(9.59643742062663,11.531462311187871,P56,label)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P37,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P51,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P34) s(P33,P34) s(P36,P34)
s(P33,P35)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P5,P38) s(P37,P38)
s(P32,P39) s(P30,P39)
s(P18,P40) s(P16,P40)
s(P14,P41) s(P12,P41)
s(P6,P42) s(P3,P42) s(P48,P42)
s(P24,P43) s(P22,P43)
s(P4,P44) s(P38,P44)
s(P43,P45) s(P56,P45)
s(P43,P46) s(P45,P46) s(P55,P46)
s(P44,P47)
s(P44,P48) s(P47,P48)
s(P10,P49) s(P42,P49) s(P52,P49)
s(P40,P50) s(P53,P50)
s(P40,P51) s(P50,P51)
s(P41,P52)
s(P41,P53) s(P52,P53)
s(P34,P54) s(P39,P54) s(P47,P54)
s(P39,P55) s(P28,P55)
s(P51,P56) s(P48,P56)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
color(#32CD32) m(P43,P43,MA15) m(P43,P45,MB15) b(P43,MA15,MB15)
color(#ADD8E6) m(P44,P44,MA16) m(P44,P47,MB16) b(P44,MA16,MB16)
color(#F08080) m(P40,P40,MA17) m(P40,P50,MB17) b(P40,MA17,MB17)
color(#E0FFFF) m(P41,P41,MA18) m(P41,P52,MB18) b(P41,MA18,MB18)
pen(2)
color(red) s(P42,P48) abstand(P42,P48,A0) print(abs(P42,P48):,7.11,17.644) print(A0,8.14,17.644)
color(red) s(P20,P51) abstand(P20,P51,A1) print(abs(P20,P51):,7.11,17.405) print(A1,8.14,17.405)
color(red) s(P45,P56) abstand(P45,P56,A2) print(abs(P45,P56):,7.11,17.167) print(A2,8.14,17.167)
color(red) s(P50,P53) abstand(P50,P53,A3) print(abs(P50,P53):,7.11,16.929) print(A3,8.14,16.929)
color(red) s(P54,P47) abstand(P54,P47,A4) print(abs(P54,P47):,7.11,16.691) print(A4,8.14,16.691)
color(red) s(P49,P52) abstand(P49,P52,A5) print(abs(P49,P52):,7.11,16.452) print(A5,8.14,16.452)
color(red) s(P46,P55) abstand(P46,P55,A6) print(abs(P46,P55):,7.11,16.214) print(A6,8.14,16.214)
print(min=0.008608356612792644,7.11,15.976)
print(max=1.0054776116890103,7.11,15.737)
\geooff
\geoprint()
In diesem Graph betrifft das die Knoten C(45,56); C(50,53); C(54,47); C(49,52); C(46,55);
(nach Button "neu zeichnen" wird ausgegeben, dass einige zu messende Kanten nicht mehr vorhanden sind, so dass auch die Eingabe RA(45,56); RA(50,53); RA(54,47); RA(49,52); RA(46,55); entfernt werden kann oder muss). Es entsteht
\geo
ebene(388.16,443.21)
x(7.11,13.27)
y(9.41,16.45)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''6.9190808847381655''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''25.303475224947388''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''10.22''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''30.7''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''9.05''/>
#<Winkel size=''18'' color=''limegreen'' id=''sechsterWinkel'' value=''165.8''/>
#<Winkel size=''18'' color=''LightBlue'' id=''siebenterWinkel'' value=''-98.9''/>
#<Winkel size=''18'' color=''LightCoral'' id=''achterWinkel'' value=''184.9''/>
#<Winkel size=''18'' color=''LightCyan'' id=''neunterWinkel'' value=''145.92''/>
#<Feinjustieren Anzahl=''2''/>
#<Rechenweg>
#P[1]=[-83.18659238651122,331.18740662176486];
#P[2]=[-132.6260538299262,292.21619181552455]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,18,16); N(41,14,12); N(42,6,3); N(43,24,22); N(44,4,38);
#M(45,43,43,sechsterWinkel,1); M(47,44,44,siebenterWinkel,1); N(49,10,42);
#M(50,40,40,achterWinkel,1);
#M(52,41,41,neunterWinkel,1); N(54,34,39); N(55,39,28); N(56,51,48);
#
#RA(42,48); RA(20,51); C(45,56); C(50,53); C(54,47); C(49,52); C(46,55);
#
#
#</Rechenweg>
#
#<Knopf id=''start_neunterWinkel'' color=''LightCyan''/>
#<animate xmlns:a0=''http://www.w3.org/1999/xlink'' a0:href=''#neunterWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_neunterWinkel.click+0s'' end=''stop_all_angles.click+0s''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
nolabel()
p(8.678581370200419,15.260910400459826,P1)
p(7.893235757111212,14.641852836091587,P2)
p(8.822028140803631,14.271252366589788,P3)
p(8.036682527714426,13.652194802221548,P4)
p(7.107890144022005,14.022795271723346,P5)
p(8.940205032126881,14.295740436401584,P6)
p(9.645254909007802,15.004898155890132,P7)
p(9.906878570934262,14.03972819183189,P8)
p(10.611928447815185,14.74888591132044,P9)
p(10.873552109741647,13.783715947262197,P10)
p(11.578601986622566,14.492873666750747,P11)
p(11.244299987928217,13.550407660112329,P12)
p(12.227650491227534,13.732126640026319,P13)
p(11.893348492533185,12.789660633387903,P14)
p(12.876698995832502,12.971379613301893,P15)
p(11.94119267920685,12.618069648039793,P16)
p(12.714921242846852,11.984552395072221,P17)
p(11.7794149262212,11.631242429810122,P18)
p(12.5531434898612,10.997725176842549,P19)
p(11.56441347993855,11.147434787350205,P20)
p(11.92912615900957,10.216314676019321,P21)
p(10.940396149086919,10.36602428652698,P22)
p(11.30510882815794,9.434904175196094,P23)
p(10.798474520600097,10.297065226511558,P24)
p(10.305138301786327,9.427226520079996,P25)
p(9.798503994228485,10.289387571395459,P26)
p(9.305167775414716,9.419548864963897,P27)
p(8.798533467856874,10.281709916279361,P28)
p(8.305197249043104,9.4118712098478,P29)
p(8.706442826868146,10.327841725899406,P30)
p(7.712566301937391,10.217345331426255,P31)
p(8.113811879762434,11.133315847477862,P32)
p(7.119935354831679,11.022819453004711,P33)
p(7.983946242946519,11.526292575642856,P34)
p(7.1159202845617875,12.022811392577589,P35)
p(7.979931172676627,12.526284515215735,P36)
p(7.111905214291896,13.022803332150469,P37)
p(7.975916102406737,13.526276454788611,P38)
p(9.107688404693189,11.243812241951014,P39)
p(11.005686362581198,12.264759682777695,P40)
nolabel()
p(10.909997989233869,12.607941653473913,P41)
p(9.083651802730088,13.306082402531546,P42)
p(10.433761841529076,11.228185337842442,P43)
p(8.904708486099157,13.155675985286813,P44)
p(9.464316491633937,11.473492723721245,P45)
p(9.736596738674512,10.51127473019196,P46)
p(9.682951634625176,12.527712927637475,P48)
p(10.075769269065368,13.180771058302607,P49)
p(10.009341066390292,12.179342759640328,P50)
p(10.581486939835807,11.359190883766555,P51)
p(8.744525352313046,12.17553784393152,P54)
nolabel()
s(P2,P1) s(P3,P1) s(P6,P1) s(P7,P1)
s(P3,P2) s(P4,P2) s(P5,P2)
s(P4,P3) s(P42,P3)
s(P5,P4) s(P44,P4)
s(P37,P5) s(P38,P5)
s(P7,P6) s(P8,P6) s(P42,P6)
s(P8,P7) s(P9,P7)
s(P9,P8) s(P10,P8)
s(P10,P9) s(P11,P9)
s(P11,P10) s(P49,P10)
s(P12,P11) s(P13,P11)
s(P13,P12) s(P14,P12) s(P41,P12)
s(P14,P13) s(P15,P13)
s(P15,P14) s(P41,P14)
s(P16,P15) s(P17,P15)
s(P17,P16) s(P18,P16) s(P40,P16)
s(P18,P17) s(P19,P17)
s(P19,P18) s(P40,P18)
s(P20,P19) s(P21,P19)
s(P51,P20) s(P21,P20) s(P22,P20)
s(P22,P21) s(P23,P21)
s(P23,P22) s(P43,P22)
s(P24,P23) s(P25,P23)
s(P25,P24) s(P26,P24) s(P43,P24)
s(P26,P25) s(P27,P25)
s(P27,P26) s(P28,P26)
s(P28,P27) s(P29,P27)
s(P29,P28) s(P46,P28)
s(P31,P29) s(P30,P29)
s(P31,P30) s(P32,P30) s(P39,P30)
s(P33,P31) s(P32,P31)
s(P33,P32) s(P39,P32)
s(P34,P33) s(P35,P33)
s(P35,P34) s(P36,P34) s(P54,P34)
s(P36,P35) s(P37,P35)
s(P37,P36) s(P38,P36)
s(P38,P37)
s(P44,P38)
s(P54,P39) s(P46,P39)
s(P50,P40) s(P51,P40)
s(P49,P41) s(P50,P41)
s(P48,P42) s(P49,P42)
s(P45,P43) s(P46,P43)
s(P54,P44) s(P48,P44)
s(P51,P45) s(P48,P45) s(P46,P45)
s(P54,P48)
s(P50,P49)
s(P51,P50)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
color(#32CD32) m(P43,P43,MA15) m(P43,P45,MB15) b(P43,MA15,MB15)
#color(#ADD8E6) m(P44,P44,MA16) m(P44,P47,MB16) b(P44,MA16,MB16)
color(#F08080) m(P40,P40,MA17) m(P40,P50,MB17) b(P40,MA17,MB17)
#color(#E0FFFF) m(P41,P41,MA18) m(P41,P52,MB18) b(P41,MA18,MB18)
pen(2)
color(red) s(P42,P48) abstand(P42,P48,A0) print(abs(P42,P48):,7.11,16.452) print(A0,8.14,16.452)
color(red) s(P20,P51) abstand(P20,P51,A1) print(abs(P20,P51):,7.11,16.214) print(A1,8.14,16.214)
print(min=0.9654723707519091,7.11,15.976)
print(max=1.1230025471710179,7.11,15.737)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
mit zwei einstellbaren und insgesamt 11 nicht passenden Kanten. Button "Feinjustieren(2)" bringt die beiden einstellbaren Kanten auf 1,
\geo
ebene(409.7,422.8)
x(6.82,13.33)
y(9.74,16.45)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''12.887259071570266''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''19.013432941428142''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''10.22''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''30.7''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''9.05''/>
#<Winkel size=''18'' color=''limegreen'' id=''sechsterWinkel'' value=''165.8''/>
#<Winkel size=''18'' color=''LightBlue'' id=''siebenterWinkel'' value=''-98.9''/>
#<Winkel size=''18'' color=''LightCoral'' id=''achterWinkel'' value=''184.9''/>
#<Winkel size=''18'' color=''LightCyan'' id=''neunterWinkel'' value=''145.92''/>
#<Feinjustieren Anzahl=''2''/>
#<Rechenweg>
#P[1]=[-83.18659238651122,331.18740662176486];
#P[2]=[-132.6260538299262,292.21619181552455]; D=ab(1,2); A(2,1); L(3,1,2);
#L(4,3,2); L(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,2);
#M(24,23,22,fifth_angle,3,''zumachen'',5,2,3);
#
#N(39,32,30); N(40,18,16); N(41,14,12); N(42,6,3); N(43,24,22); N(44,4,38);
#M(45,43,43,sechsterWinkel,1); M(47,44,44,siebenterWinkel,1); N(49,10,42);
#M(50,40,40,achterWinkel,1);
#M(52,41,41,neunterWinkel,1); N(54,34,39); N(55,39,28); N(56,51,48);
#
#RA(42,48); RA(20,51); C(45,56); C(50,53); C(54,47); C(49,52); C(46,55);
#
#
#</Rechenweg>
#
#<Knopf id=''start_neunterWinkel'' color=''LightCyan''/>
#<animate xmlns:a0=''http://www.w3.org/1999/xlink'' a0:href=''#neunterWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''start_neunterWinkel.click+0s'' end=''stop_all_angles.click+0s''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
nolabel()
p(8.678581370200419,15.260910400459826,P1)
p(7.893235757111212,14.641852836091587,P2)
p(8.822028140803631,14.271252366589788,P3)
p(8.036682527714426,13.652194802221548,P4)
p(7.107890144022005,14.022795271723346,P5)
p(9.039141581841077,14.328174460452342,P6)
p(9.666634495089987,15.106796733330787,P7)
p(10.027194706730645,14.174060793323303,P8)
p(10.654687619979555,14.95268306620175,P9)
p(11.015247831620213,14.019947126194264,P10)
p(11.642740744869124,14.798569399072711,P11)
nolabel()
p(11.303149662893615,13.85799622433153,P12)
p(12.287505467325412,14.034188307812686,P13)
p(11.947914385349902,13.093615133071506,P14)
p(12.932270189781699,13.26980721655266,P15)
p(11.994793894678889,12.92175808766378,P16)
p(12.76495142961311,12.283904365103469,P17)
p(11.827475134510298,11.93585523621459,P18)
p(12.597632669444518,11.298001513654278,P19)
p(11.60975926282716,11.453263010807357,P20)
p(11.969235565371667,10.52010879637711,P21)
p(10.98136215875431,10.67537029353019,P22)
p(11.340838461298818,9.742216079099943,P23)
p(10.839055388026612,10.607209574669419,P24)
p(10.340840583391246,9.740155938241923,P25)
p(9.83905751011904,10.605149433811398,P26)
p(9.340842705483675,9.738095797383902,P27)
p(8.839059632211471,10.603089292953378,P28)
p(8.340844827576106,9.736035656525884,P29)
p(8.524099743418711,10.719101084572012,P30)
p(7.581112651227237,10.386271783037024,P31)
p(7.764367567069843,11.369337211083153,P32)
p(6.821380474878368,11.036507909548163,P33)
p(7.731198992617017,11.45151425260794,P34)
p(6.916883697926247,12.031937030273225,P35)
p(7.826702215664897,12.446943373333001,P36)
p(7.0123869209741265,13.027366150998287,P37)
p(7.922205438712775,13.442372494058063,P38)
p(8.707354659261316,11.702166512618142,P39)
p(11.057317599576077,12.5737089587749,P40)
p(10.963558580918106,12.91742304959035,P41)
p(9.182588352444288,13.338516426582304,P42)
p(10.479579085482108,11.540363789099667,P43)
p(8.850997822405194,13.071772024556264,P44)
p(9.510133735586969,11.785671174978468,P45)
p(9.782413982627542,10.823453181449183,P46)
p(9.629240970931216,12.443808966906925,P48)
p(10.172232758244663,13.482057187580782,P49)
p(10.06097230338517,12.488292035637532,P50)
p(10.633118176830688,11.668140159763759,P51)
p(8.004455052924214,12.41345558424173,P54)
nolabel()
s(P2,P1) s(P3,P1) s(P6,P1) s(P7,P1)
s(P3,P2) s(P4,P2) s(P5,P2)
s(P4,P3) s(P42,P3)
s(P5,P4) s(P44,P4)
s(P37,P5) s(P38,P5)
s(P7,P6) s(P8,P6) s(P42,P6)
s(P8,P7) s(P9,P7)
s(P9,P8) s(P10,P8)
s(P10,P9) s(P11,P9)
s(P11,P10) s(P49,P10)
s(P12,P11) s(P13,P11)
s(P13,P12) s(P14,P12) s(P41,P12)
s(P14,P13) s(P15,P13)
s(P15,P14) s(P41,P14)
s(P16,P15) s(P17,P15)
s(P17,P16) s(P18,P16) s(P40,P16)
s(P18,P17) s(P19,P17)
s(P19,P18) s(P40,P18)
s(P20,P19) s(P21,P19)
s(P51,P20) s(P21,P20) s(P22,P20)
s(P22,P21) s(P23,P21)
s(P23,P22) s(P43,P22)
s(P24,P23) s(P25,P23)
s(P25,P24) s(P26,P24) s(P43,P24)
s(P26,P25) s(P27,P25)
s(P27,P26) s(P28,P26)
s(P28,P27) s(P29,P27)
s(P29,P28) s(P46,P28)
s(P31,P29) s(P30,P29)
s(P31,P30) s(P32,P30) s(P39,P30)
s(P33,P31) s(P32,P31)
s(P33,P32) s(P39,P32)
s(P34,P33) s(P35,P33)
s(P35,P34) s(P36,P34) s(P54,P34)
s(P36,P35) s(P37,P35)
s(P37,P36) s(P38,P36)
s(P38,P37)
s(P44,P38)
s(P54,P39) s(P46,P39)
s(P50,P40) s(P51,P40)
s(P49,P41) s(P50,P41)
s(P48,P42) s(P49,P42)
s(P45,P43) s(P46,P43)
s(P54,P44) s(P48,P44)
s(P51,P45) s(P48,P45) s(P46,P45)
s(P54,P48)
s(P50,P49)
s(P51,P50)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) f(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) f(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(#00FFFF) m(P22,P23,MA14) m(P23,P24,MB14) f(P23,MA14,MB14)
color(#32CD32) m(P43,P43,MA15) m(P43,P45,MB15) b(P43,MA15,MB15)
#color(#ADD8E6) m(P44,P44,MA16) m(P44,P47,MB16) b(P44,MA16,MB16)
color(#F08080) m(P40,P40,MA17) m(P40,P50,MB17) b(P40,MA17,MB17)
#color(#E0FFFF) m(P41,P41,MA18) m(P41,P52,MB18) b(P41,MA18,MB18)
pen(2)
color(red) s(P42,P48) abstand(P42,P48,A0) print(abs(P42,P48):,6.82,16.452) print(A0,7.85,16.452)
color(red) s(P20,P51) abstand(P20,P51,A1) print(abs(P20,P51):,6.82,16.214) print(A1,7.85,16.214)
print(min=0.6688287424115498,6.82,15.976)
print(max=1.6250694161152237,6.82,15.737)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
doch die verbleibenden 9 nicht passenden Kanten sind immer noch recht viele. Deshalb Button zur neuen Eingabe "Rahmen zuerst".
\geo
ebene(409.7,512.8)
x(6.82,13.33)
y(9.74,17.88)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''125.07912310287995''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''73.72762951021973''/>
#<Winkel size=''18'' color=''orange'' id=''orangerWinkel'' value=''132.88725907157027''/>
#<Winkel size=''18'' color=''violet'' id=''vierterWinkel'' value=''139.01343294142814''/>
#<Winkel size=''18'' color=''aqua'' id=''fuenfterWinkel'' value=''130.22''/>
#<Feinjustieren Anzahl=''5'' Ziehfaktor=''0'' Zunehmen=''1'' Warten=''0.5''
#Wiederholen=''0''/>
#<Rechenweg>
#P[29]=[-104.44794853189839,-16.617212554725995];
#P[31]=[-152.27498036846015,24.31677035670772]; D=ab(29,31); A(31,29);
#N(30,31,29); N(32,31,30); N(33,31,32); M(35,33,31,blauerWinkel); N(34,35,33);
#N(36,35,34); N(37,35,36); N(38,37,36); N(5,37,38); M(4,5,37,gruenerWinkel);
#N(2,5,4); N(3,2,4); N(1,2,3); M(7,1,2,orangerWinkel); N(6,7,1); N(8,7,6);
#N(9,7,8); N(10,9,8); N(11,9,10); M(13,11,9,vierterWinkel); N(12,13,11);
#N(14,13,12); N(15,13,14); M(17,15,13,fuenfterWinkel); N(16,17,15); N(18,17,16);
#N(19,17,18); Q(23,19,29,2*D,3*D); A(23,19); A(23,29); H(27,29,23,3); A(27,29);
#L(28,29,27); H(21,19,23,2); A(21,19); L(20,21,19); A(21,23); L(22,23,21);
#A(22,20); H(25,29,23,3/2); A(27,25); L(26,27,25); A(28,26); A(25,23);
#L(24,25,23); A(26,24); N(39,32,30); N(40,18,16); N(41,14,12); N(42,6,3);
#N(43,24,22); N(44,4,38); Q(46,43,28,D,jam(0.9687505735750152)*D); N(49,10,42);
#N(51,20,40); N(54,34,39); N(45,46,43); N(48,42,44);
#Q(50,51,49,D,jam(0.9999740326790152)*D);
#A(46,39); R(46,39,''green'',jam(1.3884846657888215)*D);
#A(49,41); R(49,41,''green'',jam(0.9721153570507967)*D);
#A(54,44); R(54,44,''green'',jam(1.0723876146939257)*D);
#A(45,51); R(45,51,''green'',jam(1.129118060617608)*D);
#A(48,45); R(48,45,''green'',jam(0.6688287424115498)*D);
#A(48,54); R(48,54,''green'',jam(1.6250694161152237)*D);
#A(50,40); R(50,40,''green'');
#A(50,41); R(50,41,''green'');
#</Rechenweg>
#
#<Knopf id=''Stopp_alleWinkel'' color=''LightGrey''/>
#
#<Knopf id=''Start_blauerWinkel'' color=''blue''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#blauerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_blauerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_gruenerWinkel'' color=''green''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#gruenerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_gruenerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_orangerWinkel'' color=''orange''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#orangerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_orangerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_vierterWinkel'' color=''violet''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#vierterWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_vierterWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_fuenfterWinkel'' color=''aqua''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink''
#xlink:href=''#fuenfterWinkel'' attributeName=''value'' values=''0;5;0;-5;0'' dur=''5''
#additive=''sum'' repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1''
#calcMode=''spline'' keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_fuenfterWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.678581370200424,15.260910400459823,P1)
p(7.893235757111217,14.641852836091584,P2)
p(8.822028140803635,14.271252366589785,P3)
p(8.036682527714428,13.652194802221546,P4)
p(7.107890144022008,14.022795271723346,P5)
p(9.039141581841081,14.328174460452338,P6)
p(9.666634495089992,15.106796733330782,P7)
p(10.027194706730647,14.174060793323296,P8)
p(10.654687619979558,14.95268306620174,P9)
p(11.015247831620215,14.019947126194255,P10)
p(11.642740744869126,14.798569399072699,P11)
p(11.303149662893617,13.857996224331519,P12)
p(12.287505467325413,14.034188307812673,P13)
p(11.947914385349902,13.093615133071493,P14)
p(12.932270189781699,13.269807216552646,P15)
p(11.994793894678889,12.921758087663767,P16)
p(12.764951429613108,12.283904365103457,P17)
p(11.827475134510298,11.935855236214575,P18)
p(12.597632669444517,11.298001513654265,P19)
p(11.609759262827158,11.453263010807342,P20)
p(11.969235565371667,10.520108796377096,P21)
p(10.981362158754308,10.675370293530175,P22)
p(11.340838461298818,9.74221607909993,P23)
p(10.839055388026615,10.607209574669406,P24)
p(10.340840583391246,9.740155938241914,P25)
p(9.839057510119046,10.605149433811391,P26)
p(9.340842705483675,9.738095797383899,P27)
p(8.839059632211475,10.603089292953376,P28)
p(8.340844827576104,9.736035656525884,P29)
p(8.524099743418711,10.719101084572012,P30)
p(7.581112651227237,10.386271783037024,P31)
p(7.764367567069843,11.369337211083153,P32)
p(6.821380474878369,11.036507909548165,P33)
p(7.731198992617018,11.45151425260794,P34)
p(6.916883697926249,12.031937030273225,P35)
p(7.826702215664898,12.446943373333,P36)
p(7.012386920974128,13.027366150998285,P37)
p(7.922205438712778,13.44237249405806,P38)
p(8.707354659261316,11.702166512618142,P39)
p(11.057317599576079,12.573708958774887,P40)
p(10.963558580918106,12.91742304959034,P41)
p(9.182588352444292,13.338516426582299,P42)
p(10.479579085482106,11.540363789099652,P43)
p(8.850997822405198,13.071772024556262,P44)
p(9.510133735586964,11.785671174978441,P45)
p(9.782413982627551,10.82345318144916,P46)
p(9.629240970931212,12.443808966906916,P48)
p(10.172232758244668,13.482057187580768,P49)
p(10.060972303385169,12.488292035637519,P50)
p(10.633118176830687,11.668140159763748,P51)
p(8.004455052924214,12.41345558424173,P54)
nolabel()
s(P2,P1) s(P3,P1)
s(P5,P2) s(P4,P2)
s(P2,P3) s(P4,P3)
s(P5,P4)
s(P37,P5) s(P38,P5)
s(P7,P6) s(P1,P6)
s(P1,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P13,P12) s(P11,P12)
s(P11,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P17,P16) s(P15,P16)
s(P15,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P21,P20) s(P19,P20)
s(P19,P21) s(P23,P21)
s(P23,P22) s(P21,P22) s(P20,P22)
s(P25,P24) s(P23,P24)
s(P23,P25)
s(P27,P26) s(P25,P26) s(P24,P26)
s(P29,P27) s(P25,P27)
s(P29,P28) s(P27,P28) s(P26,P28)
s(P31,P30) s(P29,P30)
s(P29,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33)
s(P35,P34) s(P33,P34)
s(P33,P35)
s(P35,P36) s(P34,P36)
s(P35,P37) s(P36,P37)
s(P37,P38) s(P36,P38)
s(P32,P39) s(P30,P39)
s(P18,P40) s(P16,P40)
s(P14,P41) s(P12,P41)
s(P6,P42) s(P3,P42)
s(P24,P43) s(P22,P43)
s(P4,P44) s(P38,P44)
s(P46,P45) s(P43,P45) s(P51,P45)
s(P43,P46) s(P28,P46) s(P39,P46)
s(P42,P48) s(P44,P48) s(P45,P48) s(P54,P48)
s(P10,P49) s(P42,P49) s(P41,P49)
s(P51,P50) s(P49,P50) s(P40,P50) s(P41,P50)
s(P20,P51) s(P40,P51)
s(P34,P54) s(P39,P54) s(P44,P54)
pen(2)
color(#0000FF) m(P31,P33,MA10) m(P33,P35,MB10) b(P33,MA10,MB10)
color(#008000) m(P37,P5,MA11) m(P5,P4,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P2,P1,MA12) m(P1,P7,MB12) b(P1,MA12,MB12)
color(#EE82EE) m(P9,P11,MA13) m(P11,P13,MB13) b(P11,MA13,MB13)
color(#00FFFF) m(P13,P15,MA14) m(P15,P17,MB14) b(P15,MA14,MB14)
pen(2)
color(#008000) s(P46,P39) abstand(P46,P39,A0) print(abs(P46,P39):,6.82,17.882) print(A0,7.85,17.882)
color(#008000) s(P49,P41) abstand(P49,P41,A1) print(abs(P49,P41):,6.82,17.644) print(A1,7.85,17.644)
color(#008000) s(P54,P44) abstand(P54,P44,A2) print(abs(P54,P44):,6.82,17.405) print(A2,7.85,17.405)
color(#008000) s(P45,P51) abstand(P45,P51,A3) print(abs(P45,P51):,6.82,17.167) print(A3,7.85,17.167)
color(#008000) s(P48,P45) abstand(P48,P45,A4) print(abs(P48,P45):,6.82,16.929) print(A4,7.85,16.929)
color(#008000) s(P48,P54) abstand(P48,P54,A5) print(abs(P48,P54):,6.82,16.691) print(A5,7.85,16.691)
color(#008000) s(P50,P40) abstand(P50,P40,A6) print(abs(P50,P40):,6.82,16.452) print(A6,7.85,16.452)
color(#008000) s(P50,P41) abstand(P50,P41,A7) print(abs(P50,P41):,6.82,16.214) print(A7,7.85,16.214)
print(min=0.6688287424115672,6.82,15.976)
print(max=1.6250694161152215,6.82,15.737)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
Jetzt stehen 5 einstellbaren Winkeln insgesamt 8 einstellbaren Kanten gegenüber, also rechnerisch die Möglichkeit. 5 davon einzustellen, so dass nur 3 nicht passende Kanten übrigbleiben. Doch gleich Button "Feinjustieren(5)" zerknüllt den Graph. Deshalb ändere ich die Reihenfolge der einzustellenden Kanten, zwei schon fast fertige kommen an den Anfang.
\geo
ebene(409.7,512.8)
x(6.82,13.33)
y(9.74,17.88)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''125.07912310287995''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''73.72762951021973''/>
#<Winkel size=''18'' color=''orange'' id=''orangerWinkel'' value=''132.88725907157027''/>
#<Winkel size=''18'' color=''violet'' id=''vierterWinkel'' value=''139.01343294142814''/>
#<Winkel size=''18'' color=''aqua'' id=''fuenfterWinkel'' value=''130.22''/>
#<Feinjustieren Anzahl=''5'' Ziehfaktor=''0'' Zunehmen=''1'' Warten=''0.5''
#Wiederholen=''0''/>
#<Rechenweg>
#P[29]=[-104.44794853189839,-16.617212554725995];
#P[31]=[-152.27498036846015,24.31677035670772]; D=ab(29,31); A(31,29);
#N(30,31,29); N(32,31,30); N(33,31,32); M(35,33,31,blauerWinkel); N(34,35,33);
#N(36,35,34); N(37,35,36); N(38,37,36); N(5,37,38); M(4,5,37,gruenerWinkel);
#N(2,5,4); N(3,2,4); N(1,2,3); M(7,1,2,orangerWinkel); N(6,7,1); N(8,7,6);
#N(9,7,8); N(10,9,8); N(11,9,10); M(13,11,9,vierterWinkel); N(12,13,11);
#N(14,13,12); N(15,13,14); M(17,15,13,fuenfterWinkel); N(16,17,15); N(18,17,16);
#N(19,17,18); Q(23,19,29,2*D,3*D); A(23,19); A(23,29); H(27,29,23,3); A(27,29);
#L(28,29,27); H(21,19,23,2); A(21,19); L(20,21,19); A(21,23); L(22,23,21);
#A(22,20); H(25,29,23,3/2); A(27,25); L(26,27,25); A(28,26); A(25,23);
#L(24,25,23); A(26,24); N(39,32,30); N(40,18,16); N(41,14,12); N(42,6,3);
#N(43,24,22); N(44,4,38); Q(46,43,28,D,jam(0.9687505735750152)*D); N(49,10,42);
#N(51,20,40); N(54,34,39); N(45,46,43); N(48,42,44);
#Q(50,51,49,D,jam(0.9999740326790152)*D);
#A(50,40); R(50,40,''green'');
#A(50,41); R(50,41,''green'');
#A(46,39); R(46,39,''green'',jam(1.3884846657888215)*D);
#A(49,41); R(49,41,''green'',jam(0.9721153570507967)*D);
#A(54,44); R(54,44,''green'',jam(1.0723876146939257)*D);
#A(45,51); R(45,51,''green'',jam(1.129118060617608)*D);
#A(48,45); R(48,45,''green'',jam(0.6688287424115498)*D);
#A(48,54); R(48,54,''green'',jam(1.6250694161152237)*D);
#</Rechenweg>
#
#<Knopf id=''Stopp_alleWinkel'' color=''LightGrey''/>
#
#<Knopf id=''Start_blauerWinkel'' color=''blue''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#blauerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_blauerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_gruenerWinkel'' color=''green''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#gruenerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_gruenerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_orangerWinkel'' color=''orange''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#orangerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_orangerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_vierterWinkel'' color=''violet''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#vierterWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_vierterWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_fuenfterWinkel'' color=''aqua''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink''
#xlink:href=''#fuenfterWinkel'' attributeName=''value'' values=''0;5;0;-5;0'' dur=''5''
#additive=''sum'' repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1''
#calcMode=''spline'' keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_fuenfterWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.678581370200424,15.260910400459823,P1)
p(7.893235757111217,14.641852836091584,P2)
p(8.822028140803635,14.271252366589785,P3)
p(8.036682527714428,13.652194802221546,P4)
p(7.107890144022008,14.022795271723346,P5)
p(9.039141581841081,14.328174460452338,P6)
p(9.666634495089992,15.106796733330782,P7)
p(10.027194706730647,14.174060793323296,P8)
p(10.654687619979558,14.95268306620174,P9)
p(11.015247831620215,14.019947126194255,P10)
p(11.642740744869126,14.798569399072699,P11)
p(11.303149662893617,13.857996224331519,P12)
p(12.287505467325413,14.034188307812673,P13)
p(11.947914385349902,13.093615133071493,P14)
p(12.932270189781699,13.269807216552646,P15)
p(11.994793894678889,12.921758087663767,P16)
p(12.764951429613108,12.283904365103457,P17)
p(11.827475134510298,11.935855236214575,P18)
p(12.597632669444517,11.298001513654265,P19)
p(11.609759262827158,11.453263010807342,P20)
p(11.969235565371667,10.520108796377096,P21)
p(10.981362158754308,10.675370293530175,P22)
p(11.340838461298818,9.74221607909993,P23)
p(10.839055388026615,10.607209574669406,P24)
p(10.340840583391246,9.740155938241914,P25)
p(9.839057510119046,10.605149433811391,P26)
p(9.340842705483675,9.738095797383899,P27)
p(8.839059632211475,10.603089292953376,P28)
p(8.340844827576104,9.736035656525884,P29)
p(8.524099743418711,10.719101084572012,P30)
p(7.581112651227237,10.386271783037024,P31)
p(7.764367567069843,11.369337211083153,P32)
p(6.821380474878369,11.036507909548165,P33)
p(7.731198992617018,11.45151425260794,P34)
p(6.916883697926249,12.031937030273225,P35)
p(7.826702215664898,12.446943373333,P36)
p(7.012386920974128,13.027366150998285,P37)
p(7.922205438712778,13.44237249405806,P38)
p(8.707354659261316,11.702166512618142,P39)
p(11.057317599576079,12.573708958774887,P40)
p(10.963558580918106,12.91742304959034,P41)
p(9.182588352444292,13.338516426582299,P42)
p(10.479579085482106,11.540363789099652,P43)
p(8.850997822405198,13.071772024556262,P44)
p(9.510133735586964,11.785671174978441,P45)
p(9.782413982627551,10.82345318144916,P46)
p(9.629240970931212,12.443808966906916,P48)
p(10.172232758244668,13.482057187580768,P49)
p(10.060972303385169,12.488292035637519,P50)
p(10.633118176830687,11.668140159763748,P51)
p(8.004455052924214,12.41345558424173,P54)
nolabel()
s(P2,P1) s(P3,P1)
s(P5,P2) s(P4,P2)
s(P2,P3) s(P4,P3)
s(P5,P4)
s(P37,P5) s(P38,P5)
s(P7,P6) s(P1,P6)
s(P1,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P13,P12) s(P11,P12)
s(P11,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P17,P16) s(P15,P16)
s(P15,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P21,P20) s(P19,P20)
s(P19,P21) s(P23,P21)
s(P23,P22) s(P21,P22) s(P20,P22)
s(P25,P24) s(P23,P24)
s(P23,P25)
s(P27,P26) s(P25,P26) s(P24,P26)
s(P29,P27) s(P25,P27)
s(P29,P28) s(P27,P28) s(P26,P28)
s(P31,P30) s(P29,P30)
s(P29,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33)
s(P35,P34) s(P33,P34)
s(P33,P35)
s(P35,P36) s(P34,P36)
s(P35,P37) s(P36,P37)
s(P37,P38) s(P36,P38)
s(P32,P39) s(P30,P39)
s(P18,P40) s(P16,P40)
s(P14,P41) s(P12,P41)
s(P6,P42) s(P3,P42)
s(P24,P43) s(P22,P43)
s(P4,P44) s(P38,P44)
s(P46,P45) s(P43,P45) s(P51,P45)
s(P43,P46) s(P28,P46) s(P39,P46)
s(P42,P48) s(P44,P48) s(P45,P48) s(P54,P48)
s(P10,P49) s(P42,P49) s(P41,P49)
s(P51,P50) s(P49,P50) s(P40,P50) s(P41,P50)
s(P20,P51) s(P40,P51)
s(P34,P54) s(P39,P54) s(P44,P54)
pen(2)
color(#0000FF) m(P31,P33,MA10) m(P33,P35,MB10) b(P33,MA10,MB10)
color(#008000) m(P37,P5,MA11) m(P5,P4,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P2,P1,MA12) m(P1,P7,MB12) b(P1,MA12,MB12)
color(#EE82EE) m(P9,P11,MA13) m(P11,P13,MB13) b(P11,MA13,MB13)
color(#00FFFF) m(P13,P15,MA14) m(P15,P17,MB14) b(P15,MA14,MB14)
pen(2)
color(#008000) s(P50,P40) abstand(P50,P40,A0) print(abs(P50,P40):,6.82,17.882) print(A0,7.85,17.882)
color(#008000) s(P50,P41) abstand(P50,P41,A1) print(abs(P50,P41):,6.82,17.644) print(A1,7.85,17.644)
color(#008000) s(P46,P39) abstand(P46,P39,A2) print(abs(P46,P39):,6.82,17.405) print(A2,7.85,17.405)
color(#008000) s(P49,P41) abstand(P49,P41,A3) print(abs(P49,P41):,6.82,17.167) print(A3,7.85,17.167)
color(#008000) s(P54,P44) abstand(P54,P44,A4) print(abs(P54,P44):,6.82,16.929) print(A4,7.85,16.929)
color(#008000) s(P45,P51) abstand(P45,P51,A5) print(abs(P45,P51):,6.82,16.691) print(A5,7.85,16.691)
color(#008000) s(P48,P45) abstand(P48,P45,A6) print(abs(P48,P45):,6.82,16.452) print(A6,7.85,16.452)
color(#008000) s(P48,P54) abstand(P48,P54,A7) print(abs(P48,P54):,6.82,16.214) print(A7,7.85,16.214)
print(min=0.6688287424115672,6.82,15.976)
print(max=1.6250694161152215,6.82,15.737)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
und nach Button "Feinjustieren(5)" sind es nur noch drei nicht passende Kanten
\geo
ebene(393.15,524.78)
x(6.81,13.05)
y(9.74,18.07)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''130.8353493103133''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''74.74295818965138''/>
#<Winkel size=''18'' color=''orange'' id=''orangerWinkel'' value=''127.1879656732072''/>
#<Winkel size=''18'' color=''violet'' id=''vierterWinkel'' value=''144.76522093344775''/>
#<Winkel size=''18'' color=''aqua'' id=''fuenfterWinkel'' value=''130.10699223960688''/>
#<Feinjustieren Anzahl=''5'' Ziehfaktor=''1'' Zunehmen=''1'' Warten=''0.5''
#Wiederholen=''0''/>
#<Rechenweg>
#P[29]=[-104.44794853189839,-16.617212554725995];
#P[31]=[-152.27498036846015,24.31677035670772]; D=ab(29,31); A(31,29);
#N(30,31,29); N(32,31,30); N(33,31,32); M(35,33,31,blauerWinkel); N(34,35,33);
#N(36,35,34); N(37,35,36); N(38,37,36); N(5,37,38); M(4,5,37,gruenerWinkel);
#N(2,5,4); N(3,2,4); N(1,2,3); M(7,1,2,orangerWinkel); N(6,7,1); N(8,7,6);
#N(9,7,8); N(10,9,8); N(11,9,10); M(13,11,9,vierterWinkel); N(12,13,11);
#N(14,13,12); N(15,13,14); M(17,15,13,fuenfterWinkel); N(16,17,15); N(18,17,16);
#N(19,17,18); Q(23,19,29,2*D,3*D); A(23,19); A(23,29); H(27,29,23,3); A(27,29);
#L(28,29,27); H(21,19,23,2); A(21,19); L(20,21,19); A(21,23); L(22,23,21);
#A(22,20); H(25,29,23,3/2); A(27,25); L(26,27,25); A(28,26); A(25,23);
#L(24,25,23); A(26,24); N(39,32,30); N(40,18,16); N(41,14,12); N(42,6,3);
#N(43,24,22); N(44,4,38); Q(46,43,28,D,jam(0.9687505735750152)*D); N(49,10,42);
#N(51,20,40); N(54,34,39); N(45,46,43); N(48,42,44);
#Q(50,51,49,D,jam(0.9999740326790152)*D);
#A(50,40); R(50,40,''green'');
#A(50,41); R(50,41,''green'');
#A(46,39); R(46,39,''green'',jam(1.3884846657888215)*D);
#A(49,41); R(49,41,''green'',jam(0.9721153570507967)*D);
#A(54,44); R(54,44,''green'',jam(1.0723876146939257)*D);
#A(45,51); R(45,51,''green'',jam(1.129118060617608)*D);
#A(48,45); R(48,45,''green'',jam(0.6688287424115498)*D);
#A(48,54); R(48,54,''green'',jam(1.6250694161152237)*D);
#</Rechenweg>
#
#<Knopf id=''Stopp_alleWinkel'' color=''LightGrey''/>
#
#<Knopf id=''Start_blauerWinkel'' color=''blue''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#blauerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_blauerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_gruenerWinkel'' color=''green''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#gruenerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_gruenerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_orangerWinkel'' color=''orange''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#orangerWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_orangerWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_vierterWinkel'' color=''violet''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink'' xlink:href=''#vierterWinkel''
#attributeName=''value'' values=''0;5;0;-5;0'' dur=''5'' additive=''sum''
#repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1'' calcMode=''spline''
#keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_vierterWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#
#<Knopf id=''Start_fuenfterWinkel'' color=''aqua''/>
#<animate xmlns:xlink=''http://www.w3.org/1999/xlink''
#xlink:href=''#fuenfterWinkel'' attributeName=''value'' values=''0;5;0;-5;0'' dur=''5''
#additive=''sum'' repeatCount=''indefinite'' keyTimes=''0;0.25;0.5;0.75;1''
#calcMode=''spline'' keySplines=''.3 0 .7 1;.3 0 .7 1;.3 0 .7 1;.3 0 .7 1''
#begin=''Start_fuenfterWinkel.click+0s'' end=''Stopp_alleWinkel.click+0''/>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.220679208346079,15.451153113767411,P1)
p(7.5138057211005655,14.743813115584524,P2)
p(8.47981687226254,14.485312717459657,P3)
p(7.772943385017026,13.777972719276772,P4)
p(6.806932233855051,14.036473117401638,P5)
p(8.598630943622801,14.525327813939569,P6)
p(9.211443305101696,15.315556268007544,P7)
p(9.589395040378418,14.3897309681797,P8)
p(10.202207401857313,15.179959422247673,P9)
p(10.580159137134036,14.254134122419831,P10)
p(11.19297149861293,15.044362576487806,P11)
p(10.967545782446521,14.070102217810074,P12)
p(11.92399286104478,14.362008000282529,P13)
p(11.698567144878373,13.387747641604799,P14)
p(12.65501422347663,13.679653424077255,P15)
p(11.764635141825114,13.224433597007518,P16)
p(12.604056617199623,12.680952606833912,P17)
p(11.713677535548104,12.225732779764177,P18)
p(12.553099010922613,11.682251789590573,P19)
p(11.563212797631888,11.82411540274401,P20)
p(11.935298411413726,10.895916988601542,P21)
p(10.945412198123,11.03778060175498,P22)
p(11.317497811904836,10.109582187612512,P23)
p(10.713555386044524,10.906610133324556,P24)
p(10.325280150461927,9.985066677250302,P25)
p(9.721337724601613,10.782094622962346,P26)
p(9.333062489019015,9.860551166888092,P27)
p(8.729120063158703,10.657579112600136,P28)
p(8.340844827576104,9.736035656525884,P29)
p(8.524099743418711,10.719101084572012,P30)
p(7.581112651227237,10.386271783037024,P31)
p(7.764367567069843,11.369337211083153,P32)
p(6.821380474878369,11.036507909548165,P33)
p(7.684987794864673,11.54067295877914,P34)
p(6.816564394537263,12.036496312165989,P35)
p(7.680171714523567,12.540661361396966,P36)
p(6.811748314196157,13.036484714783814,P37)
p(7.675355634182461,13.54064976401479,P38)
p(8.707354659261316,11.702166512618142,P39)
p(10.874256060173595,12.769213769937783,P40)
p(10.742120066280116,13.095841859132342,P41)
p(8.85776860753927,13.559487417631818,P42)
p(10.341469772262688,11.834808547467023,P43)
p(8.641366785344438,13.282149365889925,P44)
p(9.404301588203085,12.183686455604567,P45)
p(9.5707485489666,11.19763604652165,P46)
p(9.525671360176533,12.815238861691286,P48)
p(9.857763593719636,13.562654058459188,P49)
p(9.895670606586322,12.563372787557185,P50)
p(10.563226853261499,11.818813416166998,P51)
p(8.06266449561279,12.466610488913878,P54)
nolabel()
s(P2,P1) s(P3,P1)
s(P5,P2) s(P4,P2)
s(P2,P3) s(P4,P3)
s(P5,P4)
s(P37,P5) s(P38,P5)
s(P7,P6) s(P1,P6)
s(P1,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P13,P12) s(P11,P12)
s(P11,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P17,P16) s(P15,P16)
s(P15,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P21,P20) s(P19,P20)
s(P19,P21) s(P23,P21)
s(P23,P22) s(P21,P22) s(P20,P22)
s(P25,P24) s(P23,P24)
s(P23,P25)
s(P27,P26) s(P25,P26) s(P24,P26)
s(P29,P27) s(P25,P27)
s(P29,P28) s(P27,P28) s(P26,P28)
s(P31,P30) s(P29,P30)
s(P29,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33)
s(P35,P34) s(P33,P34)
s(P33,P35)
s(P35,P36) s(P34,P36)
s(P35,P37) s(P36,P37)
s(P37,P38) s(P36,P38)
s(P32,P39) s(P30,P39)
s(P18,P40) s(P16,P40)
s(P14,P41) s(P12,P41)
s(P6,P42) s(P3,P42)
s(P24,P43) s(P22,P43)
s(P4,P44) s(P38,P44)
s(P46,P45) s(P43,P45) s(P51,P45)
s(P43,P46) s(P28,P46) s(P39,P46)
s(P42,P48) s(P44,P48) s(P45,P48) s(P54,P48)
s(P10,P49) s(P42,P49) s(P41,P49)
s(P51,P50) s(P49,P50) s(P40,P50) s(P41,P50)
s(P20,P51) s(P40,P51)
s(P34,P54) s(P39,P54) s(P44,P54)
pen(2)
color(#0000FF) m(P31,P33,MA10) m(P33,P35,MB10) b(P33,MA10,MB10)
color(#008000) m(P37,P5,MA11) m(P5,P4,MB11) b(P5,MA11,MB11)
color(#FFA500) m(P2,P1,MA12) m(P1,P7,MB12) b(P1,MA12,MB12)
color(#EE82EE) m(P9,P11,MA13) m(P11,P13,MB13) b(P11,MA13,MB13)
color(#00FFFF) m(P13,P15,MA14) m(P15,P17,MB14) b(P15,MA14,MB14)
pen(2)
color(#008000) s(P50,P40) abstand(P50,P40,A0) print(abs(P50,P40):,6.81,18.072) print(A0,7.84,18.072)
color(#008000) s(P50,P41) abstand(P50,P41,A1) print(abs(P50,P41):,6.81,17.834) print(A1,7.84,17.834)
color(#008000) s(P46,P39) abstand(P46,P39,A2) print(abs(P46,P39):,6.81,17.596) print(A2,7.84,17.596)
color(#008000) s(P49,P41) abstand(P49,P41,A3) print(abs(P49,P41):,6.81,17.357) print(A3,7.84,17.357)
color(#008000) s(P54,P44) abstand(P54,P44,A4) print(abs(P54,P44):,6.81,17.119) print(A4,7.84,17.119)
color(#008000) s(P45,P51) abstand(P45,P51,A5) print(abs(P45,P51):,6.81,16.881) print(A5,7.84,16.881)
color(#008000) s(P48,P45) abstand(P48,P45,A6) print(abs(P48,P45):,6.81,16.643) print(A6,7.84,16.643)
color(#008000) s(P48,P54) abstand(P48,P54,A7) print(abs(P48,P54):,6.81,16.404) print(A7,7.84,16.404)
print(min=0.6431089046054419,6.81,16.166)
print(max=1.5039716845958424,6.81,15.928)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1343, vom Themenstarter, eingetragen 2018-08-27
Um die neuen Erkenntnisse/Funktionen aus dem anderen Thread auch hier zu präsentieren, einer der letzten Graphen als pgfplot. Die Punktbezeichnungen habe ich allerdings nicht leserlich angepasst.
Wie wäre es, wenn wir gemessene richtige Kanten(=1) grün und falsche Kanten(<>1) rot anzeigen lassen würden? -----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1344, vom Themenstarter, eingetragen 2018-08-27
Es ist schon erstaunlich, dass ein minimaler 4/4 mit einem so langen Hüllenelement aus 7 Dreiecken möglich ist - wenn auch nur fast. Mit Sicherheit kann man ihn noch genauer aufbauen, aber bestimmt nicht ganz richtig.
Fast 4/4 mit 104 - Harborth Klon unsymmetrisch 😎
\geo
ebene(573.85,551.76)
x(6.08,13.2)
y(9.19,16.05)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 104</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blue_angle'' value=''12.900428715265047''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''30.60986457858549''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''1.7001361374149857''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''5.601941489016515''/>
#<Feinjustieren Anzahl=''4''/>
#<Rechenweg>
#P[1]=[-210.02928814843364,290.05993523800294];
#P[2]=[-245.3293439291976,217.68409526273922]; D=ab(1,2); A(2,1);
#N(3,1,2); N(4,3,2); N(5,4,2); N(6,4,5); N(7,6,5);
#
#M(8,1,3,blue_angle,2,green_angle,3,orange_angle,2,fourth_angle,3,''zumachen'',7,4,
#2);
#
#N(39,20,18); N(40,39,16); N(41,22,39); N(42,10,8); N(43,41,40); N(44,40,12);
#N(45,38,36); N(46,6,45);
#N(47,3,46); N(48,28,26); N(49,47,46); N(50,45,34); N(51,49,50); N(52,42,51);
#
#RA(42,44); RA(44,43); RA(49,50); RA(48,52);
#RA(47,51); RA(43,52); RA(41,48);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(7.391766730434046,13.602087975088665,P1)
p(6.953395583644969,12.703293928789499,P2)
p(7.950959633904793,12.773050402533624,P3)
p(7.512588487115716,11.874256356234456,P4)
p(6.515024436855891,11.804499882490331,P5)
p(7.074217340326638,10.97546230993529,P6)
p(6.0766532900668135,10.905705836191165,P7)
p(8.12193411962554,12.918819664861065,P8)
p(8.348578139287762,13.892797328029657,P9)
p(9.078745528479253,13.209529017802057,P10)
p(9.305389548141475,14.183506680970648,P11)
p(9.606266679824504,13.22984376797141,P12)
p(10.2817244232874,13.967242463926327,P13)
p(10.582601554970429,13.013579550927089,P14)
p(11.258059298433324,13.750978246882008,P15)
p(11.558936430116354,12.79731533388277,P16)
p(12.234394173579249,13.534714029837687,P17)
p(11.581111374645069,12.777600045937824,P18)
p(12.563432717729883,12.590397538155354,P19)
p(11.910149918795703,11.83328355425549,P20)
p(12.892471261880518,11.64608104647302,P21)
p(11.896567317699432,11.736498599882504,P22)
p(12.316215391589324,10.828811707787823,P23)
p(11.320311447408239,10.919229261197307,P24)
p(11.739959521298132,10.011542369102626,P25)
p(10.744055577117047,10.10195992251211,P26)
p(11.163703651006939,9.194273030417428,P27)
p(10.670807472744709,10.064361162421589,P28)
p(10.163737136028875,9.202456484616155,P29)
p(9.670840957766645,10.072544616620315,P30)
p(9.163770621050809,9.21063993881488,P31)
p(8.670874442788579,10.080728070819042,P32)
p(8.163804106072742,9.218823393013608,P33)
p(7.670907927810514,10.088911525017767,P34)
p(7.163837591094678,9.227006847212333,P35)
p(7.618939500719172,10.11744620609992,P36)
p(6.620245440580746,10.066356341701749,P37)
p(7.07534735020524,10.956795700589335,P38)
p(10.927828575710889,12.02048606203796,P39)
p(10.57141743534353,12.954815286145843,P40)
p(11.169350559000979,11.050090713951613,P41)
p(8.85210150881703,12.235551354633465,P42)
p(10.812939418633617,11.984419938059496,P43)
p(9.851791403831557,12.26045343900105,P44)
p(8.074041410343668,11.00788556498751,P45)
p(7.546063099875463,11.85714341963187,P46)
p(8.540218080145396,11.965105798285219,P47)
p(10.251159398854819,10.972048054516272,P48)
nolabel()
p(8.136638752577225,11.050161140745965,P49)
p(8.664617063045437,10.20090328610161,P50)
p(9.136106784296816,11.082774842936447,P51)
p(9.775483351955373,11.851668596799204,P52)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7) s(P37,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16) s(P14,P16)
s(P15,P17) s(P16,P17)
s(P17,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20)
s(P19,P21) s(P20,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27) s(P29,P27)
s(P29,P28) s(P27,P28)
s(P31,P29)
s(P31,P30) s(P29,P30) s(P28,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P33)
s(P35,P34) s(P33,P34) s(P32,P34)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P7,P38) s(P37,P38)
s(P20,P39) s(P18,P39)
s(P39,P40) s(P16,P40)
s(P22,P41) s(P39,P41) s(P48,P41)
s(P10,P42) s(P8,P42) s(P44,P42)
s(P41,P43) s(P40,P43) s(P52,P43)
s(P40,P44) s(P12,P44) s(P43,P44)
s(P38,P45) s(P36,P45)
s(P6,P46) s(P45,P46)
s(P3,P47) s(P46,P47) s(P51,P47)
s(P28,P48) s(P26,P48) s(P52,P48)
s(P47,P49) s(P46,P49) s(P50,P49)
s(P45,P50) s(P34,P50)
s(P49,P51) s(P50,P51)
s(P42,P52) s(P51,P52)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P8,MB11) f(P1,MA11,MB11)
color(#FFA500) m(P3,P1,MA12) m(P1,P8,MB12) f(P1,MA12,MB12)
color(#EE82EE) m(P3,P1,MA13) m(P1,P8,MB13) f(P1,MA13,MB13)
pen(2)
color(#008000) s(P42,P44) abstand(P42,P44,A0) print(abs(P42,P44):,6.08,16.046) print(A0,6.88,16.046)
color(#008000) s(P44,P43) abstand(P44,P43,A1) print(abs(P44,P43):,6.08,15.86) print(A1,6.88,15.86)
color(#008000) s(P49,P50) abstand(P49,P50,A2) print(abs(P49,P50):,6.08,15.674) print(A2,6.88,15.674)
color(#008000) s(P48,P52) abstand(P48,P52,A3) print(abs(P48,P52):,6.08,15.487) print(A3,6.88,15.487)
color(red) s(P47,P51) abstand(P47,P51,A4) print(abs(P47,P51):,6.08,15.301) print(A4,6.88,15.301)
color(red) s(P43,P52) abstand(P43,P52,A5) print(abs(P43,P52):,6.08,15.115) print(A5,6.88,15.115)
color(red) s(P41,P48) abstand(P41,P48,A6) print(abs(P41,P48):,6.08,14.929) print(A6,6.88,14.929)
print(min=0.9215018520124036,6.08,14.742)
print(max=1.0647024290861429,6.08,14.556)
color(blue)
color(orange)
color(red)
\geooff
\geoprint()
Die Labels müssen wir in den Griff kriegen, sonst ganz gut. Das kann man bestimmt automatisieren, da es ja von den Punktabständen abhängt.
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Ex_Senior
Beitrag No.1345, eingetragen 2018-08-29
Liebe Streichholzgrapher,
der allerletzte Graph #1344, erstellt mit TikZ/pgfplots, ist im Hinblick auf die Beschriftungen und auf die Angabe der Verbindungskanten noch etwas kompliziert und umständlich.
Ich habe eine Lösung erstellt, die von einfachen Datentabellen ausgeht
Knoten und Beschriftungen
copy Nr x y Textposition
1 -1.23 4.58 south %Default
2 -2.01 3.95
3 -1.07 3.59 north % Änderung
....
Kanten
copy Startpkt Endpkt
1 1
2 1
3 1
3 2
4 3
...
und den Rest automatisch macht.
Um das -hier auf dem MP- machen zu können, bedarf es aber der Bibliothek \usepgfplotslibrary{patchplots} , die zur Zeit nicht eingebunden ist.
Wenn jmd. matroid überredet, \usepgfplotslibrary{patchplots} einzubinden kann man das auch hier machen.
Jedenfalls sieht das dann irgendwie so aus:
Notiz Profil
Quote
Link
matroid
Senior Dabei seit: 12.03.2001 Mitteilungen: 14322
Herkunft: Solingen
Beitrag No.1346, eingetragen 2018-08-29
@cis: Ich habe es eingebunden. Ich habe aber kein Testbeispiel. Kannst Du bitte einen Test machen.
Gruß
Matroid
Notiz Profil
Quote
Link
Ex_Senior
Beitrag No.1347, eingetragen 2018-08-29
Aber es muss \usepgfplotslibrary{patchplots} dabeistehen, sonst scheint es nicht zu gehen; lässt man das weg geht es nicht; lässt man es nicht weg steht das Wort 'patchplots' dabei.
Irgendetwas stimmt noch nicht!
Notiz Profil
Quote
Link
matroid
Senior Dabei seit: 12.03.2001 Mitteilungen: 14322
Herkunft: Solingen
Beitrag No.1348, eingetragen 2018-08-29
Notiz Profil
Quote
Link
Ex_Senior
Beitrag No.1349, eingetragen 2018-08-29
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1350, vom Themenstarter, eingetragen 2018-08-30
Im Namen der Matchstick Crew: Danke an euch beide! 😎 -----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Ex_Senior
Beitrag No.1351, eingetragen 2018-08-30
Dieses Beispiel mit 106 Kanten und 107 Punkten liefert:
Meine Datei hat 19kB, die Begrenzung hier ist m.W. 60kB ; daher vermute ich, dass es zur Zeit eine Zeilenanzahlbegrenzung gibt.
Wenn ich die Tabellen massiv herunterbreche geht es:
___________________________________________
€dit:
Hier nochmal der Beweis, dass der Code stimmt. Die Nichtanzeige der Beschriftungen liegt vermutlich an einer Zeilenanzahlbeschränkung - daher fehlen i.F. die Beschriftungen. Wird die Zeilenanzahlbeschränkung gelockert, können auch die Beschriftungen angezeigt werden.
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1352, vom Themenstarter, eingetragen 2018-08-31
Übrigens: Die Graphen #1343 und #1344 - und wahrscheinlich auch noch einige der letzten fast 4/4 - sind mit je einer zusätzlich eingefügten Kante auch neue fast 4/5 Rekorde.
...und hoffentlich können wir bald mal wieder das "fast" aus dem Text streichen. 😎 -----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1353, vom Themenstarter, eingetragen 2018-08-31
Mal sehen, wer sie als erster testet.
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1354, vom Themenstarter, eingetragen 2018-08-31
Es kann nicht immer passen... Ein chancenloser 4/4 mit 102. Da zwei innere Knoten sehr nahe beieinanderliegen auch ein vermeintlicher 4/8 Rekord.
\geo
ebene(539.26,620.62)
x(6.92,13.62)
y(8.28,15.98)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 102</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blue_angle'' value=''-12568.94''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''11.62''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''29.36''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''15.59''/>
#<Winkel size=''18'' color=''darkturquoise'' id=''fifth_angle'' value=''6.01''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[-153.46145564683061,217.61179395353452];
#P[2]=[-184.9252751339937,143.4876803768501]; D=ab(1,2); A(2,1);
#N(3,1,2); N(4,3,2); N(5,4,2); N(6,4,5); N(7,6,5);
#
#M(8,1,3,blue_angle,2,green_angle,2,orange_angle,2,fourth_angle,2,fifth_angle,3,
#''zumachen'',7,3,2);
#
#N(39,18,16); N(40,39,14); N(41,22,20); N(42,10,8); N(43,36,34); N(44,30,43);
#N(45,6,38); N(46,39,40);
#N(47,42,3); N(48,44,28); N(49,24,48); N(50,43,44); N(51,48,49);
#
#RA(42,46); RA(12,40); RA(46,47); RA(45,47); RA(41,49); RA(45,50);RA(50,51);
#RA(41,51);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(8.09425019842372,12.7023960602981,P1)
p(7.703519069934446,11.78189120684566,P2)
p(8.696065221575768,11.903760550250807,P3)
p(8.305334093086493,10.983255696798366,P4)
p(7.312787941445171,10.86138635339322,P5)
p(7.9146029645972185,10.062750843345928,P6)
p(6.922056812955896,9.94088149994078,P7)
p(9.021825831640705,12.328760616767765,P8)
p(8.881615800883749,13.318882400830278,P9)
p(9.809191434100732,12.945246957299943,P10)
p(9.668981403343777,13.935368741362456,P11)
p(10.005748006020161,12.993780585467423,P12)
p(10.652803967589609,13.75622309647887,P13)
p(10.989570570265993,12.814634940583838,P14)
p(11.63662653183544,13.577077451595283,P15)
p(11.446502887957346,12.595317297566552,P16)
p(12.391793943708596,12.921545469122423,P17)
p(12.201670299830502,11.939785315093692,P18)
p(13.146961355581752,12.266013486649562,P19)
p(12.324122422157116,11.697738826260235,P20)
p(13.227682181093567,11.269276736886269,P21)
p(12.404843247668929,10.701002076496943,P22)
p(13.30840300660538,10.272539987122979,P23)
p(12.364948686318309,10.604042544476103,P24)
p(12.549586210374532,9.621235857120757,P25)
p(11.606131890087461,9.952738414473881,P26)
p(11.790769414143682,8.969931727118535,P27)
p(10.847315093856611,9.301434284471659,P28)
p(11.031952617912834,8.318627597116313,P29)
p(10.520070164277568,9.177683098035981,P30)
p(10.032047504038005,8.304852138976496,P31)
p(9.520165050402738,9.163907639896163,P32)
p(9.032142390163173,8.291076680836678,P33)
p(8.520259936527907,9.150132181756346,P34)
p(8.032237276288342,8.277301222696861,P35)
p(8.475043551119228,9.173918534023379,P36)
p(7.47714704462212,9.109091361318821,P37)
p(7.919953319453004,10.005708672645339,P38)
p(11.256379244079252,11.613557143537824,P39)
p(10.353347096444857,12.04313011794242,P40)
p(11.501283488732478,11.129464165870907,P41)
nolabel()
p(9.94940146485769,11.95512517323743,P42)
p(8.963066211358793,10.046749493082864,P43)
p(9.520833653718313,9.216752215832077,P44)
p(8.912499471094327,10.127578016050482,P45)
p(10.432842061648431,11.046294850454716,P46)
p(9.354626179525999,11.151233165590504,P47)
p(10.136469842455119,10.004782724833866,P48)
p(11.250709264386714,10.304412634654984,P49)
p(9.96074865970965,10.114791628944687,P50)
p(10.481477558528518,10.943382573464698,P51)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7) s(P37,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12) s(P40,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29) s(P31,P29)
s(P31,P30) s(P29,P30)
s(P33,P31)
s(P33,P32) s(P31,P32) s(P30,P32)
s(P35,P33)
s(P35,P34) s(P33,P34) s(P32,P34)
s(P37,P36) s(P35,P36) s(P38,P36)
s(P35,P37)
s(P7,P38) s(P37,P38)
s(P18,P39) s(P16,P39)
s(P39,P40) s(P14,P40)
s(P22,P41) s(P20,P41) s(P49,P41) s(P51,P41)
s(P10,P42) s(P8,P42) s(P46,P42)
s(P36,P43) s(P34,P43)
s(P30,P44) s(P43,P44)
s(P6,P45) s(P38,P45) s(P47,P45) s(P50,P45)
s(P39,P46) s(P40,P46) s(P47,P46)
s(P42,P47) s(P3,P47)
s(P44,P48) s(P28,P48)
s(P24,P49) s(P48,P49)
s(P43,P50) s(P44,P50) s(P51,P50)
s(P48,P51) s(P49,P51)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) b(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P8,MB11) f(P1,MA11,MB11)
color(#FFA500) m(P3,P1,MA12) m(P1,P8,MB12) f(P1,MA12,MB12)
color(#EE82EE) m(P3,P1,MA13) m(P1,P8,MB13) f(P1,MA13,MB13)
color(#00CED1) m(P3,P1,MA14) m(P1,P8,MB14) f(P1,MA14,MB14)
pen(2)
color(red) s(P42,P46) abstand(P42,P46,A0) print(abs(P42,P46):,6.92,15.984) print(A0,7.73,15.984)
color(red) s(P12,P40) abstand(P12,P40,A1) print(abs(P12,P40):,6.92,15.798) print(A1,7.73,15.798)
color(red) s(P46,P47) abstand(P46,P47,A2) print(abs(P46,P47):,6.92,15.612) print(A2,7.73,15.612)
color(red) s(P45,P47) abstand(P45,P47,A3) print(abs(P45,P47):,6.92,15.426) print(A3,7.73,15.426)
color(red) s(P41,P49) abstand(P41,P49,A4) print(abs(P41,P49):,6.92,15.239) print(A4,7.73,15.239)
color(red) s(P45,P50) abstand(P45,P50,A5) print(abs(P45,P50):,6.92,15.053) print(A5,7.73,15.053)
color(red) s(P50,P51) abstand(P50,P51,A6) print(abs(P50,P51):,6.92,14.867) print(A6,7.73,14.867)
color(red) s(P41,P51) abstand(P41,P51,A7) print(abs(P41,P51):,6.92,14.68) print(A7,7.73,14.68)
print(min=0.862262994142865,6.92,14.494)
print(max=1.1538230246644698,6.92,14.308)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
StefanVogel
Senior Dabei seit: 26.11.2005 Mitteilungen: 3757
Herkunft: Raun
Beitrag No.1355, eingetragen 2018-09-01
Das Prozentzeichen "%" macht aus dem Rest der Zeile einen Kommentar? Wenn ja, dann schaffe ich einen solchen Fehler mit nur 3 Zeilen. Wenn ich folgendes eingebe
TikZ
copy <math>
\begin{tikzpicture}
%repea
\end{tikzpicture}
</math>
dann wird nichts gezeichnet, weil nur die eine Kommentarzeile enthalten ist. Wenn ich dort noch ein "t" ergänze
TikZ
copy <math>
\begin{tikzpicture}
%repeat
\end{tikzpicture}
</math>
erhalte ich die Fehlermeldung "[Unparseable or potentially dangerous latex formula. Error 2 ]".
Streichholzgraph-981.htm ist jetzt auf TikZ aus dem Graph #1347 eingestellt, mit Button "PGF/TikZ " und dem Testbeispiel #1353-1
Der Teilgraph von Punkt 1 bis 12 ist starr und die weiteren Teilgraphen bis Punkt 23 sind symmetrisch dazu und ebenfalls starr angeordnet. Deshalb ist der Abstand der Punkte 22 und 23 exakt 2, so dass der Winkel in Punkt 22 in Richtung Punkt 23 ausgerichtet werden muss, was alles übrige durcheinanderbringt. Gleiches gilt auch für die anderen Graphen #1353-2 bis 4.
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1356, vom Themenstarter, eingetragen 2018-09-04
4/4 mit 108 Versuch, drei Kanten falsch.
\geo
ebene(444.93,585.54)
x(7.11,13.8)
y(7.6,16.4)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 108</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blue_angle'' value=''9.274766903337762''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''7.616763005404645''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''24.466468704766083''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''8.269042507312433''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''12.857933847867201''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[68.8493870422396,-158.8285071941671];
#P[2]=[110.73065906660622,-107.10944345920564]; D=ab(1,2); A(2,1,Bew(1));
#N(3,1,2); N(4,3,2); N(5,4,2); N(6,4,5); N(7,6,5);
#
#M(8,1,3,blue_angle,2,green_angle,3,orange_angle,2,fourth_angle,3,fifth_angle,3,
#''zumachen'',7,2,2);
#
#N(41,12,10); N(42,8,3); N(43,28,26); N(44,36,34); N(45,16,41); N(46,42,6);
#N(47,20,18); N(48,40,38);
#N(49,41,42); N(50,22,43); N(51,44,32); N(52,44,51); N(53,50,45); N(54,53,46);
#
# RA(47,50);RA(49,53); RA(43,51); RA(46,49); RA(45,47);
#RA(48,52);RA(52,54);RA(48,54);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(11.034551270356719,7.613395834798391,P1)
p(11.663871661406555,8.390541796255363,P2)
p(10.676183320811417,8.546976261295592,P3)
p(11.305503711861254,9.324122222752564,P4)
p(12.29319205245639,9.167687757712335,P5)
p(11.93482410291109,10.101268184209536,P6)
p(12.922512443506228,9.944833719169306,P7)
p(10.530403935390055,8.477013495945968,P8)
p(10.034562769162685,7.608600266040826,P9)
p(9.530415434196021,8.472217927188403,P10)
p(9.03457426796865,7.603804697283261,P11)
p(9.410935496632373,8.530277700429458,P12)
p(8.420405725655446,8.392979583878668,P13)
p(8.79676695431917,9.319452587024864,P14)
p(7.806237183342241,9.182154470474075,P15)
p(8.182598412005966,10.108627473620272,P16)
p(7.192068641029037,9.971329357069482,P17)
p(8.03678913415484,10.506537063005505,P18)
p(7.150925417950152,10.970482616181757,P19)
p(7.995645911075956,11.505690322117779,P20)
p(7.109782194871267,11.969635875294033,P21)
p(8.053161513400635,11.637919940538001,P22)
p(7.868746280474776,12.6207683631673,P23)
p(8.812125599004142,12.28905242841127,P24)
p(8.627710366078283,13.271900851040568,P25)
p(9.57108968460765,12.940184916284538,P26)
p(9.38667445168179,13.923033338913836,P27)
p(9.785183020489072,13.005868729594892,P28)
p(10.380216587207666,13.80956957846725,P29)
p(10.778725156014948,12.892404969148306,P30)
p(11.373758722733543,13.696105818020662,P31)
p(11.772267291540825,12.778941208701719,P32)
p(12.36730085825942,13.582642057574077,P33)
p(11.894042958696797,12.701718133218758,P34)
p(12.893574405771297,12.732326731833522,P35)
p(12.420316506208673,11.851402807478204,P36)
p(13.419847953283172,11.882011406092968,P37)
p(12.456691531578802,11.61306957719751,P38)
p(13.171180198394701,10.913422562631137,P39)
p(12.20802377669033,10.64448073373568,P40)
nolabel()
p(9.906776662859748,9.398690930334597,P41)
p(10.172035985844753,9.41059392244317,P42)
p(9.969598253414928,12.023020306965593,P43)
p(11.420785059134175,11.82079420886344,P44)
p(9.182387332241762,10.088082036809597,P45)
p(10.935847737593221,10.056033003914795,P46)
p(8.881509627280643,11.041744768941527,P47)
p(11.493535109874431,11.344127748302054,P48)
p(9.99497522056926,10.394793843902248,P49)
p(8.969708184990159,12.037847682509177,P50)
p(10.789134595714403,12.596047517183749,P51)
p(10.43357076805097,11.661395515389858,P52)
p(9.270585889951267,11.084184950377248,P53)
p(10.211458406975217,10.745424110389775,P54)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7) s(P39,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16) s(P14,P16)
s(P15,P17) s(P16,P17)
s(P17,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20)
s(P19,P21) s(P20,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P29,P30) s(P28,P30)
s(P29,P31) s(P30,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33) s(P35,P33)
s(P35,P34) s(P33,P34)
s(P37,P35)
s(P37,P36) s(P35,P36) s(P34,P36)
s(P39,P38) s(P37,P38) s(P40,P38)
s(P37,P39)
s(P7,P40) s(P39,P40)
s(P12,P41) s(P10,P41)
s(P8,P42) s(P3,P42)
s(P28,P43) s(P26,P43) s(P51,P43)
s(P36,P44) s(P34,P44)
s(P16,P45) s(P41,P45) s(P47,P45)
s(P42,P46) s(P6,P46) s(P49,P46)
s(P20,P47) s(P18,P47) s(P50,P47)
s(P40,P48) s(P38,P48) s(P52,P48) s(P54,P48)
s(P41,P49) s(P42,P49) s(P53,P49)
s(P22,P50) s(P43,P50)
s(P44,P51) s(P32,P51)
s(P44,P52) s(P51,P52) s(P54,P52)
s(P50,P53) s(P45,P53)
s(P53,P54) s(P46,P54)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P8,MB11) f(P1,MA11,MB11)
color(#FFA500) m(P3,P1,MA12) m(P1,P8,MB12) f(P1,MA12,MB12)
color(#EE82EE) m(P3,P1,MA13) m(P1,P8,MB13) f(P1,MA13,MB13)
color(aqua) m(P3,P1,MA14) m(P1,P8,MB14) f(P1,MA14,MB14)
pen(2)
color(#008000) s(P47,P50) abstand(P47,P50,A0) print(abs(P47,P50):,7.11,16.402) print(A0,8.09,16.402)
color(#008000) s(P49,P53) abstand(P49,P53,A1) print(abs(P49,P53):,7.11,16.177) print(A1,8.09,16.177)
color(#008000) s(P43,P51) abstand(P43,P51,A2) print(abs(P43,P51):,7.11,15.952) print(A2,8.09,15.952)
color(#008000) s(P46,P49) abstand(P46,P49,A3) print(abs(P46,P49):,7.11,15.726) print(A3,8.09,15.726)
color(#008000) s(P45,P47) abstand(P45,P47,A4) print(abs(P45,P47):,7.11,15.501) print(A4,8.09,15.501)
color(red) s(P48,P52) abstand(P48,P52,A5) print(abs(P48,P52):,7.11,15.275) print(A5,8.09,15.275)
color(red) s(P52,P54) abstand(P52,P54,A6) print(abs(P52,P54):,7.11,15.05) print(A6,8.09,15.05)
color(red) s(P48,P54) abstand(P48,P54,A7) print(abs(P48,P54):,7.11,14.825) print(A7,8.09,14.825)
print(min=0.9425165864431619,7.11,14.599)
print(max=1.4149794055626104,7.11,14.374)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1357, vom Themenstarter, eingetragen 2018-09-06
Es fehlten noch richtige Eingaben zu den beiden 114ern aus #428 . Dass sie beide nicht möglich sind war aber schon 2016 klar. Nicht wundern, die Graphen sind hier gespiegelt.
\geo
ebene(451.74,589.82)
x(7,14.17)
y(8.64,18.01)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 114</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''1093.552259226284''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''756.8425103460934''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''9.60523042762302''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''13.552259226283732''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''2196.842510346093''/>
#<Winkel size=''18'' color=''sienna'' id=''sechsterWinkel'' value=''9.60523042762292''/>
#<Feinjustieren Anzahl=''6''/>
#<Rechenweg>
#P[1]=[129.37831412075482,294.3585624407898];
#P[2]=[68.23060600076053,309.3243141078828]; D=ab(1,2); A(2,1); N(3,1,2);
#N(4,3,2); N(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,3);
#M(26,25,24,fifth_angle,2); M(30,29,28,sechsterWinkel,2,''zumachen'',5,3,2);
#N(43,3,4); N(44,42,40); N(45,32,30); N(46,28,26); N(47,18,16); N(48,14,12);
#N(49,43,44); N(50,45,46); N(51,47,48); N(52,50,46); N(53,51,48); N(54,49,44);
#N(55,20,52); N(56,6,53); N(57,34,54);
#RA(57,45); RA(43,56); RA(47,55);
#RA(52,24); RA(53,10); RA(54,38);
#RA(51,55); RA(50,57); RA(56,49);
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(12.055173912844971,14.675884383423202,P1)
p(11.083842856226179,14.913615278444901,P2)
p(11.363627390182371,13.953552460417395,P3)
p(10.392296333563579,14.191283355439095,P4)
p(10.112511799607384,15.151346173466601,P5)
p(11.55214800294216,13.811613052204557,P6)
p(12.552141886491507,13.808115501076262,P7)
p(12.049115976588695,12.943844169857616,P8)
p(13.049109860138042,12.940346618729322,P9)
p(12.54608395023523,12.076075287510678,P10)
p(13.546077833784578,12.072577736382383,P11)
p(12.74369882799259,11.475762914964331,P12)
p(13.66174512759169,11.079289723194194,P13)
p(12.859366121799702,10.482474901776143,P14)
p(13.7774124213988,10.086001710006006,P15)
p(12.806081364780006,10.3237326050277,P16)
p(13.085865898736204,9.363669787000196,P17)
p(12.11453484211741,9.601400682021891,P18)
p(12.394319376073607,8.641337863994387,P19)
p(11.89735140242707,9.509106746341326,P20)
p(11.39432549252426,8.64483541512268,P21)
p(10.897357518877723,9.512604297469618,P22)
p(10.394331608974912,8.648332966250972,P23)
p(9.897363635328377,9.516101848597911,P24)
p(9.394337725425567,8.651830517379265,P25)
p(9.278670431618457,9.645118530567455,P26)
p(8.476291425826467,9.048303709149405,P27)
p(8.360624132019359,10.041591722337595,P28)
p(7.558245126227369,9.444776900919544,P29)
p(8.249791648889968,10.167108823925352,P30)
p(7.278460592271174,10.40483971894705,P31)
p(7.9700071149337735,11.127171641952858,P32)
p(6.998676058314979,11.364902536974554,P33)
p(7.998669941864327,11.36140498584626,P34)
p(7.501701968217791,12.2291738681932,P35)
p(8.501695851767138,12.225676317064904,P36)
p(8.004727878120605,13.093445199411844,P37)
p(9.00472176166995,13.089947648283548,P38)
p(8.507753788023416,13.957716530630488,P39)
p(9.425800087622518,13.561243338860358,P40)
p(9.3101327938154,14.554531352048544,P41)
p(10.228179093414504,14.158058160278413,P42)
p(10.672080867519771,13.23122053741159,P43)
p(10.343846387221621,13.164770147090225,P44)
p(8.941338171552566,10.88944074693116,P45)
p(9.163003137811348,10.638406543755643,P46)
p(11.834750308161212,10.561463500049395,P47)
p(11.941319822200601,10.87894809354628,P48)
p(10.703584694296618,12.231716906153345,P49)
p(9.791181794008583,11.416475676865444,P50)
p(10.953402858928362,11.033932201373355,P51)
p(10.150920101083589,10.483422435928567,P52)
p(11.581581515125595,11.812001334483156,P53)
p(9.715667731024379,12.38670101398043,P54)
p(11.017752475265114,9.98482276177021,P55)
p(11.579965312174325,12.812000028426313,P56)
p(8.850451559794148,11.885301994195089,P57)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P41,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33) s(P35,P33)
s(P35,P34) s(P33,P34)
s(P37,P35)
s(P37,P36) s(P35,P36) s(P34,P36)
s(P39,P37)
s(P39,P38) s(P37,P38) s(P36,P38)
s(P41,P40) s(P39,P40) s(P42,P40)
s(P39,P41)
s(P5,P42) s(P41,P42)
s(P3,P43) s(P4,P43) s(P56,P43)
s(P42,P44) s(P40,P44)
s(P32,P45) s(P30,P45)
s(P28,P46) s(P26,P46)
s(P18,P47) s(P16,P47) s(P55,P47)
s(P14,P48) s(P12,P48)
s(P43,P49) s(P44,P49)
s(P45,P50) s(P46,P50) s(P57,P50)
s(P47,P51) s(P48,P51) s(P55,P51)
s(P50,P52) s(P46,P52) s(P24,P52)
s(P51,P53) s(P48,P53) s(P10,P53)
s(P49,P54) s(P44,P54) s(P38,P54)
s(P20,P55) s(P52,P55)
s(P6,P56) s(P53,P56) s(P49,P56)
s(P34,P57) s(P54,P57) s(P45,P57)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) b(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(aqua) m(P24,P25,MA14) m(P25,P26,MB14) b(P25,MA14,MB14)
color(#A0522D) m(P28,P29,MA15) m(P29,P30,MB15) f(P29,MA15,MB15)
pen(2)
color(#008000) s(P57,P45) abstand(P57,P45,A0) print(abs(P57,P45):,7,18.011) print(A0,8.03,18.011)
color(#008000) s(P43,P56) abstand(P43,P56,A1) print(abs(P43,P56):,7,17.772) print(A1,8.03,17.772)
color(#008000) s(P47,P55) abstand(P47,P55,A2) print(abs(P47,P55):,7,17.534) print(A2,8.03,17.534)
color(#008000) s(P52,P24) abstand(P52,P24,A3) print(abs(P52,P24):,7,17.296) print(A3,8.03,17.296)
color(#008000) s(P53,P10) abstand(P53,P10,A4) print(abs(P53,P10):,7,17.058) print(A4,8.03,17.058)
color(#008000) s(P54,P38) abstand(P54,P38,A5) print(abs(P54,P38):,7,16.819) print(A5,8.03,16.819)
color(red) s(P51,P55) abstand(P51,P55,A6) print(abs(P51,P55):,7,16.581) print(A6,8.03,16.581)
color(red) s(P50,P57) abstand(P50,P57,A7) print(abs(P50,P57):,7,16.343) print(A7,8.03,16.343)
color(red) s(P56,P49) abstand(P56,P49,A8) print(abs(P56,P49):,7,16.104) print(A8,8.03,16.104)
print(min=0.9999999999994971,7,15.866)
print(max=1.0510811050471367,7,15.628)
\geooff
\geoprint()
\geo
ebene(451.83,590.22)
x(6.74,13.91)
y(8.34,17.71)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 114</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''1094.9527232874905''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''757.1802525497986''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''7.867024162710884''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''14.952723287490482''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''2197.1802525497988''/>
#<Winkel size=''18'' color=''sienna'' id=''sechsterWinkel'' value=''7.867024162710973''/>
#<Feinjustieren Anzahl=''6''/>
#
#<Rechenweg>
#P[1]=[110.16528976506982,273.5918536443599];
#P[2]=[49.288083117931336,289.6225006098043]; D=ab(1,2); A(2,1); N(3,1,2);
#N(4,3,2); N(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,3);
#M(26,25,24,fifth_angle,2); M(30,29,28,sechsterWinkel,2,''zumachen'',5,3,2);
#
#N(43,3,4); N(44,42,40); N(45,32,30); N(46,28,26); N(47,18,16); N(48,14,12);
#N(49,43,44); N(50,45,46); N(51,47,48); N(52,45,50); N(53,47,51); N(54,43,49);
#N(55,52,50); N(56,54,49); N(57,53,51);
#
#RA(57,24); RA(56,10); RA(38,55);
#RA(52,34); RA(53,20); RA(54,6);
#RA(46,57); RA(55,44); RA(56,48);
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(11.74997511109057,14.346005311616496,P1)
p(10.782940969099066,14.600652063456677,P2)
p(11.04592748401003,13.635852554245055,P3)
p(10.078893342018526,13.890499306085236,P4)
p(9.815906827107561,14.855298815296859,P5)
p(11.253002191070209,13.478239262057954,P6)
p(12.252996094539753,13.481731113106662,P7)
p(11.756023174519392,12.61396506354812,P8)
p(12.756017077988934,12.617456914596826,P9)
p(12.259044157968574,11.749690865038286,P10)
p(13.259038061438117,11.753182716086991,P11)
p(12.464414879438378,11.14607976054435,P12)
p(13.38749305265079,10.761467376267872,P13)
p(12.59286987065105,10.15436442072523,P14)
p(13.51594804386346,9.769752036448752,P15)
p(12.548913901871957,10.024398788288936,P16)
p(12.811900416782919,9.059599279077315,P17)
p(11.844866274791414,9.314246030917499,P18)
p(12.107852789702374,8.349446521705875,P19)
p(11.604831806253195,9.213720720215711,P20)
p(11.107858886232831,8.345954670657171,P21)
p(10.60483790278365,9.210228869167008,P22)
p(10.107864982763289,8.342462819608466,P23)
p(9.604843999314108,9.206737018118302,P24)
p(9.107871079293746,8.338970968559762,P25)
p(8.979416088081075,9.330686308378882,P26)
p(8.184792906081336,8.723583352836243,P27)
p(8.056337914868665,9.715298692655363,P28)
p(7.261714732868926,9.108195737112723,P29)
p(7.965762359949469,9.81834849448416,P30)
p(6.998728217957966,10.072995246324346,P31)
p(7.702775845038509,10.783148003695784,P32)
p(6.735741703047006,11.037794755535968,P33)
p(7.735735606516549,11.041286606584686,P34)
p(7.2327146230673565,11.905560805094515,P35)
p(8.2327085265369,11.909052656143233,P36)
p(7.729687543087707,12.773326854653062,P37)
p(8.729681446557251,12.77681870570178,P38)
p(8.226660463108058,13.64109290421161,P39)
p(9.14973863632046,13.25648051993511,P40)
p(9.02128364510781,14.248195859754233,P41)
p(9.944361818320212,13.863583475477736,P42)
p(10.34187985692949,12.925699796873616,P43)
p(10.072816809532863,12.871868135658612,P44)
p(8.669809987030012,10.528501251855598,P45)
p(8.850961096868406,10.322401648198001,P46)
p(11.581879759880454,10.27904554012912,P47)
p(11.669791697438638,10.53897680500171,P48)
p(10.401676063434849,11.927489190995493,P49)
p(9.504387626794825,11.079391588678268,P50)
p(10.687505913610249,10.726365809184568,P51)
p(8.610013780524621,11.52671185773372,P52)
p(10.747302120115645,9.728155203306446,P53)
p(11.23625370319968,12.478379527818134,P54)
p(9.444591420289433,12.07760219455639,P55)
p(11.296049909705038,11.480168921940013,P56)
p(9.852928273845437,10.175475472361894,P57)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P41,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33) s(P35,P33)
s(P35,P34) s(P33,P34)
s(P37,P35)
s(P37,P36) s(P35,P36) s(P34,P36)
s(P39,P37)
s(P39,P38) s(P37,P38) s(P36,P38) s(P55,P38)
s(P41,P40) s(P39,P40) s(P42,P40)
s(P39,P41)
s(P5,P42) s(P41,P42)
s(P3,P43) s(P4,P43)
s(P42,P44) s(P40,P44)
s(P32,P45) s(P30,P45)
s(P28,P46) s(P26,P46) s(P57,P46)
s(P18,P47) s(P16,P47)
s(P14,P48) s(P12,P48)
s(P43,P49) s(P44,P49)
s(P45,P50) s(P46,P50)
s(P47,P51) s(P48,P51)
s(P45,P52) s(P50,P52) s(P34,P52)
s(P47,P53) s(P51,P53) s(P20,P53)
s(P43,P54) s(P49,P54) s(P6,P54)
s(P52,P55) s(P50,P55) s(P44,P55)
s(P54,P56) s(P49,P56) s(P10,P56) s(P48,P56)
s(P53,P57) s(P51,P57) s(P24,P57)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) b(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(aqua) m(P24,P25,MA14) m(P25,P26,MB14) b(P25,MA14,MB14)
color(#A0522D) m(P28,P29,MA15) m(P29,P30,MB15) f(P29,MA15,MB15)
pen(2)
color(#008000) s(P57,P24) abstand(P57,P24,A0) print(abs(P57,P24):,6.74,17.715) print(A0,7.77,17.715)
color(#008000) s(P56,P10) abstand(P56,P10,A1) print(abs(P56,P10):,6.74,17.476) print(A1,7.77,17.476)
color(#008000) s(P38,P55) abstand(P38,P55,A2) print(abs(P38,P55):,6.74,17.238) print(A2,7.77,17.238)
color(#008000) s(P52,P34) abstand(P52,P34,A3) print(abs(P52,P34):,6.74,17) print(A3,7.77,17)
color(#008000) s(P53,P20) abstand(P53,P20,A4) print(abs(P53,P20):,6.74,16.761) print(A4,7.77,16.761)
color(#008000) s(P54,P6) abstand(P54,P6,A5) print(abs(P54,P6):,6.74,16.523) print(A5,7.77,16.523)
color(red) s(P46,P57) abstand(P46,P57,A6) print(abs(P46,P57):,6.74,16.285) print(A6,7.77,16.285)
color(red) s(P55,P44) abstand(P55,P44,A7) print(abs(P55,P44):,6.74,16.047) print(A7,7.77,16.047)
color(red) s(P56,P48) abstand(P56,P48,A8) print(abs(P56,P48):,6.74,15.808) print(A8,7.77,15.808)
print(min=0.9999999999999938,6.74,15.57)
print(max=1.0126823415489905,6.74,15.332)
\geooff
\geoprint()
So wird ein fast 120er aus dem ersten.
\geo
ebene(451.74,589.82)
x(7,14.17)
y(8.64,18.01)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 120</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''1093.552259226284''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''756.8425103460933''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''9.605230427622882''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''13.552259226283928''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''2196.842510346093''/>
#<Winkel size=''18'' color=''sienna'' id=''sechsterWinkel'' value=''9.605230427622939''/>
#<Feinjustieren Anzahl=''6''/>
#<Rechenweg>
#
#P[1]=[129.37831412075482,294.3585624407898];
#P[2]=[68.23060600076053,309.3243141078828]; D=ab(1,2); A(2,1); N(3,1,2);
#N(4,3,2); N(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,3);
#M(26,25,24,fifth_angle,2); M(30,29,28,sechsterWinkel,2,''zumachen'',5,3,2);
#
#N(43,3,4); N(44,42,40); N(45,32,30); N(46,28,26); N(47,18,16); N(48,14,12);
#N(49,43,44); N(50,45,46); N(51,47,48); N(52,50,46); N(53,51,48); N(54,49,44);
#N(55,20,52); N(56,6,53); N(57,34,54); N(58,50,55); N(59,51,56); N(60,49,57);
#
#RA(57,45); RA(43,56); RA(47,55);
#RA(52,24); RA(53,10); RA(54,38);
#RA(60,59); RA(58,59); RA(58,60);
#//RA(51,55); RA(50,57); RA(56,49);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(12.055173912844971,14.675884383423202,P1)
p(11.083842856226179,14.913615278444901,P2)
p(11.363627390182371,13.953552460417395,P3)
p(10.392296333563579,14.191283355439095,P4)
p(10.112511799607384,15.151346173466601,P5)
p(11.55214800294216,13.811613052204557,P6)
p(12.552141886491507,13.808115501076262,P7)
p(12.049115976588695,12.943844169857616,P8)
p(13.049109860138042,12.940346618729322,P9)
p(12.54608395023523,12.076075287510678,P10)
p(13.546077833784578,12.072577736382383,P11)
p(12.743698827992588,11.475762914964335,P12)
p(13.661745127591686,11.079289723194194,P13)
p(12.859366121799695,10.482474901776145,P14)
p(13.777412421398793,10.086001710006006,P15)
p(12.80608136478,10.323732605027706,P16)
p(13.085865898736193,9.3636697870002,P17)
p(12.1145348421174,9.6014006820219,P18)
p(12.394319376073593,8.641337863994394,P19)
p(11.897351402427057,9.509106746341333,P20)
p(11.394325492524246,8.644835415122689,P21)
p(10.89735751887771,9.512604297469627,P22)
p(10.394331608974898,8.648332966250983,P23)
p(9.897363635328364,9.516101848597922,P24)
p(9.394337725425553,8.651830517379278,P25)
p(9.27867043161845,9.645118530567467,P26)
p(8.476291425826457,9.048303709149424,P27)
p(8.360624132019353,10.041591722337614,P28)
p(7.5582451262273604,9.44477690091957,P29)
p(8.249791648889964,10.167108823925371,P30)
p(7.278460592271172,10.404839718947077,P31)
p(7.970007114933775,11.127171641952879,P32)
p(6.9986760583149845,11.364902536974585,P33)
p(7.998669941864331,11.361404985846306,P34)
p(7.501701968217782,12.229173868193238,P35)
p(8.50169585176713,12.22567631706496,P36)
p(8.00472787812058,13.09344519941189,P37)
p(9.004721761669927,13.089947648283612,P38)
p(8.507753788023377,13.957716530630542,P39)
p(9.425800087622466,13.56124333886038,P40)
p(9.31013279381538,14.554531352048572,P41)
p(10.22817909341447,14.15805816027841,P42)
p(10.672080867519771,13.23122053741159,P43)
p(10.343846387221555,13.164770147090218,P44)
p(8.941338171552568,10.889440746931175,P45)
p(9.163003137811348,10.638406543755657,P46)
p(11.834750308161208,10.561463500049406,P47)
p(11.941319822200597,10.878948093546287,P48)
p(10.703584694296566,12.231716906153345,P49)
p(9.791181794008589,11.416475676865453,P50)
p(10.953402858928357,11.033932201373364,P51)
p(10.150920101083587,10.483422435928574,P52)
p(11.581581515125592,11.812001334483163,P53)
p(9.715667731024324,12.386701013980414,P54)
p(11.017752475264908,9.984822761769863,P55)
p(11.579965312174586,12.81200002842632,P56)
p(8.850451559792509,11.88530199419781,P57)
p(10.65801416818991,10.917876002706741,P58)
p(10.951786655977351,12.033930895316521,P59)
p(9.83836852306475,11.73031788637074,P60)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P41,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33) s(P35,P33)
s(P35,P34) s(P33,P34)
s(P37,P35)
s(P37,P36) s(P35,P36) s(P34,P36)
s(P39,P37)
s(P39,P38) s(P37,P38) s(P36,P38)
s(P41,P40) s(P39,P40) s(P42,P40)
s(P39,P41)
s(P5,P42) s(P41,P42)
s(P3,P43) s(P4,P43) s(P56,P43)
s(P42,P44) s(P40,P44)
s(P32,P45) s(P30,P45)
s(P28,P46) s(P26,P46)
s(P18,P47) s(P16,P47) s(P55,P47)
s(P14,P48) s(P12,P48)
s(P43,P49) s(P44,P49)
s(P45,P50) s(P46,P50)
s(P47,P51) s(P48,P51)
s(P50,P52) s(P46,P52) s(P24,P52)
s(P51,P53) s(P48,P53) s(P10,P53)
s(P49,P54) s(P44,P54) s(P38,P54)
s(P20,P55) s(P52,P55)
s(P6,P56) s(P53,P56)
s(P34,P57) s(P54,P57) s(P45,P57)
s(P50,P58) s(P55,P58) s(P59,P58) s(P60,P58)
s(P51,P59) s(P56,P59)
s(P49,P60) s(P57,P60) s(P59,P60)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) b(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(aqua) m(P24,P25,MA14) m(P25,P26,MB14) b(P25,MA14,MB14)
color(#A0522D) m(P28,P29,MA15) m(P29,P30,MB15) f(P29,MA15,MB15)
pen(2)
color(#008000) s(P57,P45) abstand(P57,P45,A0) print(abs(P57,P45):,7,18.011) print(A0,8.03,18.011)
color(#008000) s(P43,P56) abstand(P43,P56,A1) print(abs(P43,P56):,7,17.772) print(A1,8.03,17.772)
color(#008000) s(P47,P55) abstand(P47,P55,A2) print(abs(P47,P55):,7,17.534) print(A2,8.03,17.534)
color(#008000) s(P52,P24) abstand(P52,P24,A3) print(abs(P52,P24):,7,17.296) print(A3,8.03,17.296)
color(#008000) s(P53,P10) abstand(P53,P10,A4) print(abs(P53,P10):,7,17.058) print(A4,8.03,17.058)
color(#008000) s(P54,P38) abstand(P54,P38,A5) print(abs(P54,P38):,7,16.819) print(A5,8.03,16.819)
color(red) s(P60,P59) abstand(P60,P59,A6) print(abs(P60,P59):,7,16.581) print(A6,8.03,16.581)
color(red) s(P58,P59) abstand(P58,P59,A7) print(abs(P58,P59):,7,16.343) print(A7,8.03,16.343)
color(red) s(P58,P60) abstand(P58,P60,A8) print(abs(P58,P60):,7,16.104) print(A8,8.03,16.104)
print(min=0.9999999999999983,7,15.866)
print(max=1.1540714006958772,7,15.628)
\geooff
\geoprint()
Und hier noch ein besserer 120er.
\geo
ebene(451.51,590.32)
x(6.73,13.9)
y(8.34,17.71)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 120</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blauerWinkel'' value=''1094.9527232874905''/>
#<Winkel size=''18'' color=''green'' id=''gruenerWinkel'' value=''756.802969991658''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''8.24430672085158''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''14.952723287490489''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''2196.802969991658''/>
#<Winkel size=''18'' color=''sienna'' id=''sechsterWinkel'' value=''8.244306720851618''/>
#<Feinjustieren Anzahl=''6''/>
#
#<Rechenweg>
#P[1]=[110.16528976506982,273.5918536443599];
#P[2]=[49.288083117931336,289.6225006098043]; D=ab(1,2); A(2,1); N(3,1,2);
#N(4,3,2); N(5,4,2);
#M(6,1,3,blauerWinkel,3); M(12,11,10,gruenerWinkel,2);
#M(16,15,14,orange_angle,2); M(20,19,18,fourth_angle,3);
#M(26,25,24,fifth_angle,2); M(30,29,28,sechsterWinkel,2,''zumachen'',5,3,2);
#
#N(43,3,4); N(44,42,40); N(45,32,30); N(46,28,26); N(47,18,16); N(48,14,12);
#N(49,46,24); N(50,48,10); N(51,44,38); N(52,49,20); N(53,50,6); N(54,51,34);
#N(55,52,47); N(56,53,43); N(57,54,45); N(58,46,55); N(59,48,56); N(60,44,57);
#
#RA(57,51); RA(56,50); RA(49,55);
#RA(52,47); RA(53,43); RA(54,45);
#RA(58,60); RA(58,59); RA(59,60);
#
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(11.74997511109057,14.346005311616496,P1)
p(10.782940969099066,14.600652063456677,P2)
p(11.04592748401003,13.635852554245055,P3)
p(10.078893342018526,13.890499306085236,P4)
p(9.815906827107561,14.855298815296859,P5)
p(11.253002191070209,13.478239262057954,P6)
p(12.252996094539753,13.481731113106662,P7)
p(11.756023174519392,12.61396506354812,P8)
p(12.756017077988934,12.617456914596826,P9)
p(12.259044157968574,11.749690865038286,P10)
p(13.259038061438117,11.753182716086991,P11)
p(12.460434470239553,11.151325337528949,P12)
p(13.380960045125207,10.760643029276531,P13)
p(12.582356453926645,10.158785650718489,P14)
p(13.502882028812298,9.768103342466073,P15)
p(12.535847886820793,10.022750094306256,P16)
p(12.798834401731757,9.057950585094634,P17)
p(11.831800259740252,9.312597336934815,P18)
p(12.094786774651215,8.347797827723195,P19)
p(11.591765791202032,9.21207202623303,P20)
p(11.09479287118167,8.344305976674487,P21)
p(10.591771887732488,9.208580175184322,P22)
p(10.094798967712128,8.34081412562578,P23)
p(9.591777984262945,9.205088324135616,P24)
p(9.094805064242586,8.337322274577074,P25)
p(8.9728830805555,9.329861961387534,P26)
p(8.174279489356934,8.728004582829495,P27)
p(8.052357505669848,9.720544269639955,P28)
p(7.253753914471282,9.118686891081918,P29)
p(7.957801541551826,9.828839648453354,P30)
p(6.9907673995603234,10.08348640029354,P31)
p(7.6948150266408675,10.793639157664977,P32)
p(6.7277808846493645,11.048285909505163,P33)
p(7.727774788118908,11.051777760553883,P34)
p(7.224753804669714,11.91605195906371,P35)
p(8.224747708139256,11.919543810112431,P36)
p(7.721726724690061,12.783818008622259,P37)
p(8.721720628159606,12.78730985967098,P38)
p(8.21869964471041,13.651584058180806,P39)
p(9.139225219596055,13.26090174992837,P40)
p(9.017303235908985,14.253441436738832,P41)
p(9.937828810794631,13.862759128486395,P42)
p(10.34187985692949,12.925699796873616,P43)
p(10.059750794481701,12.870219441675934,P44)
p(8.66184916863237,10.538992405824791,P45)
p(8.850961096868414,10.322401648197994,P46)
p(11.568813744829288,10.277396846146438,P47)
p(11.661830879040991,10.549467958970906,P48)
p(9.83986225879428,10.173826778379206,P49)
p(11.29604990970509,11.480168921940049,P50)
p(9.436630601891725,12.088093348525582,P51)
p(10.734236105064532,9.726506509323851,P52)
p(11.236253703199708,12.47837952781817,P53)
p(8.602052962127384,11.537203011702198,P54)
p(10.674439898559127,10.72471711520197,P55)
p(10.401676063434898,11.927489190995495,P56)
p(9.496426808397617,11.089882742646804,P57)
p(9.68553873663324,10.87329198502064,P58)
p(10.76745703277078,10.996788228026345,P59)
p(10.11954700098679,11.872008835797795,P60)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5) s(P41,P5)
s(P1,P6)
s(P1,P7) s(P6,P7)
s(P7,P8) s(P6,P8)
s(P7,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16)
s(P15,P17) s(P16,P17)
s(P17,P18) s(P16,P18)
s(P17,P19) s(P18,P19)
s(P19,P20)
s(P19,P21) s(P20,P21)
s(P21,P22) s(P20,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26)
s(P25,P27) s(P26,P27)
s(P27,P28) s(P26,P28)
s(P27,P29) s(P28,P29)
s(P29,P30)
s(P29,P31) s(P30,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33) s(P35,P33)
s(P35,P34) s(P33,P34)
s(P37,P35)
s(P37,P36) s(P35,P36) s(P34,P36)
s(P39,P37)
s(P39,P38) s(P37,P38) s(P36,P38)
s(P41,P40) s(P39,P40) s(P42,P40)
s(P39,P41)
s(P5,P42) s(P41,P42)
s(P3,P43) s(P4,P43)
s(P42,P44) s(P40,P44)
s(P32,P45) s(P30,P45)
s(P28,P46) s(P26,P46)
s(P18,P47) s(P16,P47)
s(P14,P48) s(P12,P48)
s(P46,P49) s(P24,P49) s(P55,P49)
s(P48,P50) s(P10,P50)
s(P44,P51) s(P38,P51)
s(P49,P52) s(P20,P52) s(P47,P52)
s(P50,P53) s(P6,P53) s(P43,P53)
s(P51,P54) s(P34,P54) s(P45,P54)
s(P52,P55) s(P47,P55)
s(P53,P56) s(P43,P56) s(P50,P56)
s(P54,P57) s(P45,P57) s(P51,P57)
s(P46,P58) s(P55,P58) s(P60,P58) s(P59,P58)
s(P48,P59) s(P56,P59) s(P60,P59)
s(P44,P60) s(P57,P60)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P6,MB10) b(P1,MA10,MB10)
color(#008000) m(P10,P11,MA11) m(P11,P12,MB11) b(P11,MA11,MB11)
color(#FFA500) m(P14,P15,MA12) m(P15,P16,MB12) f(P15,MA12,MB12)
color(#EE82EE) m(P18,P19,MA13) m(P19,P20,MB13) f(P19,MA13,MB13)
color(aqua) m(P24,P25,MA14) m(P25,P26,MB14) b(P25,MA14,MB14)
color(#A0522D) m(P28,P29,MA15) m(P29,P30,MB15) f(P29,MA15,MB15)
pen(2)
color(#008000) s(P57,P51) abstand(P57,P51,A0) print(abs(P57,P51):,6.73,17.715) print(A0,7.76,17.715)
color(#008000) s(P56,P50) abstand(P56,P50,A1) print(abs(P56,P50):,6.73,17.476) print(A1,7.76,17.476)
color(#008000) s(P49,P55) abstand(P49,P55,A2) print(abs(P49,P55):,6.73,17.238) print(A2,7.76,17.238)
color(#008000) s(P52,P47) abstand(P52,P47,A3) print(abs(P52,P47):,6.73,17) print(A3,7.76,17)
color(#008000) s(P53,P43) abstand(P53,P43,A4) print(abs(P53,P43):,6.73,16.761) print(A4,7.76,16.761)
color(#008000) s(P54,P45) abstand(P54,P45,A5) print(abs(P54,P45):,6.73,16.523) print(A5,7.76,16.523)
color(red) s(P58,P60) abstand(P58,P60,A6) print(abs(P58,P60):,6.73,16.285) print(A6,7.76,16.285)
color(red) s(P58,P59) abstand(P58,P59,A7) print(abs(P58,P59):,6.73,16.047) print(A7,7.76,16.047)
color(red) s(P59,P60) abstand(P59,P60,A8) print(abs(P59,P60):,6.73,15.808) print(A8,7.76,15.808)
print(min=0.9999999999992649,6.73,15.57)
print(max=1.0889437641835125,6.73,15.332)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link
haribo
Senior Dabei seit: 25.10.2012 Mitteilungen: 2664
Beitrag No.1358, eingetragen 2018-09-08
2018-09-04 17:53 - Slash in Beitrag No. 1356 schreibt:
4/4 mit 108 Versuch, drei Kanten falsch.
moin slash, wenn du inzwischen fit bist mit der dateneingabe dann versuch doch solche reduktions-opperationen, ein punkt an dem zwei falschen längen ankommen eliminieren und durch zwei andere erstmal falsche längen ersetzen und versuchen ob es sich evtl wieder gut hinzieht
schick wäre es ähnliches automatisch zu programieren... (un-ernst)
Notiz Profil
Quote
Link
Slash
Aktiv Dabei seit: 23.03.2005 Mitteilungen: 8189
Herkunft: Cuxhaven-Sahlenburg
Beitrag No.1359, vom Themenstarter, eingetragen 2018-09-08
Das wäre dann ein 106er, der uns noch fehlt. Er lässt sich aber nicht zurechtziehen, jedenfalls nicht mit den hier gemessenen Kanten.
\geo
ebene(450.67,579.73)
x(6.89,13.67)
y(8.04,16.75)
form(.)
#//Eingabe war:
#<Streichholzgraph>
#<Bildtext>Fast 4/4 mit 106</Bildtext>
#<Winkel size=''18'' color=''blue'' id=''blue_angle'' value=''13.37''/>
#<Winkel size=''18'' color=''green'' id=''green_angle'' value=''10.42''/>
#<Winkel size=''18'' color=''orange'' id=''orange_angle'' value=''24.17''/>
#<Winkel size=''18'' color=''violet'' id=''fourth_angle'' value=''5.57''/>
#<Winkel size=''18'' color=''aqua'' id=''fifth_angle'' value=''12.26''/>
#<Feinjustieren Anzahl=''5''/>
#<Rechenweg>
#P[1]=[63.34366602962119,-130.6706956754735];
#P[2]=[109.5731805836674,-82.79863196293621]; D=ab(1,2); A(2,1,Bew(1));
#N(3,1,2); N(4,3,2); N(5,4,2); N(6,4,5); N(7,6,5);
#M(8,1,3,blue_angle,2,green_angle,3,orange_angle,2,fourth_angle,3,fifth_angle,3,
#''zumachen'',7,2,2);
#N(41,12,10); N(42,8,3); N(43,28,26); N(44,36,34); N(45,16,41); N(46,42,6);
#N(47,20,18); N(48,40,38);
#N(49,41,42); N(50,22,43); N(51,44,32); N(52,44,51); N(53,50,45);
#RA(47,50);RA(49,53); RA(43,51); RA(52,53); RA(46,48);
#RA(46,49); RA(45,47); RA(48,52);
#</Rechenweg>
#</Streichholzgraph>
#//Ende der Eingabe, weiter mit fedgeo:
p(10.951820676628419,8.03650344589822,P1)
p(11.646479047087414,8.755843246236871,P2)
p(10.676183320811418,8.997765141836538,P3)
p(11.370841691270414,9.71710494217519,P4)
p(12.341137417546411,9.475183046575523,P5)
p(12.065500061729411,10.436444742513842,P6)
p(13.035795788005407,10.194522846914175,P7)
p(10.461373156769243,8.907974174186888,P8)
p(9.951881127346317,8.047498798621437,P9)
p(9.461433607487143,8.918969526910105,P10)
p(8.951941578064215,8.058494151344652,P11)
p(9.297403569735266,8.996926893905712,P12)
p(8.311965979098762,8.82688938345428,P13)
p(8.657427970769811,9.765322126015338,P14)
p(7.671990380133307,9.595284615563907,P15)
p(8.017452371804358,10.533717358124965,P16)
p(7.032014781167854,10.363679847673534,P17)
p(7.861442541952536,10.92229383750883,P18)
p(6.962954755453445,11.36129235403476,P19)
p(7.792382516238128,11.919906343870055,P20)
p(6.893894729739038,12.358904860395985,P21)
p(7.830750158738093,12.009187967531208,P22)
p(7.665186157592023,12.995387015150147,P23)
p(8.60204158659108,12.64567012228537,P24)
p(8.43647758544501,13.63186916990431,P25)
p(9.373333014444066,13.28215227703953,P26)
p(9.207769013297996,14.268351324658472,P27)
p(9.578974791845429,13.339800696004872,P28)
p(10.19752033568574,14.125549644585329,P29)
p(10.568726114233172,13.196999015931729,P30)
p(11.187271658073485,13.982747964512185,P31)
p(11.558477436620917,13.054197335858586,P32)
p(12.177022980461228,13.839946284439044,P33)
p(11.73577040460429,12.942563331458759,P34)
p(12.733553126736783,13.009118867771472,P35)
p(12.292300550879844,12.111735914791186,P36)
p(13.290083273012337,12.1782914511039,P37)
p(12.367514398531455,11.792459010996698,P38)
p(13.162939530508872,11.186407149009037,P39)
p(12.24037065602799,10.800574708901834,P40)
nolabel()
p(9.806895599158192,9.857402269471164,P41)
p(10.185735800952243,9.869235870125207,P42)
p(9.744538792991495,12.353601648385931,P43)
p(11.29451782874735,12.045180378478474,P44)
p(9.015321882034975,10.468475955993283,P45)
p(11.07066229392049,10.334966588505385,P46)
p(8.690870302737217,11.480907827344126,P47)
p(11.444945524050572,11.406626570889493,P48)
p(9.965660317039367,10.84471871537699,P49)
p(8.746220562245451,12.411573280759804,P50)
p(10.601016195658511,12.76563543252634,P51)
p(10.32383463311259,11.804817873681476,P52)
p(9.073837022976441,11.466762477128674,P53)
nolabel()
s(P1,P2)
s(P1,P3) s(P2,P3)
s(P3,P4) s(P2,P4)
s(P4,P5) s(P2,P5)
s(P4,P6) s(P5,P6)
s(P6,P7) s(P5,P7) s(P39,P7)
s(P1,P8)
s(P1,P9) s(P8,P9)
s(P9,P10) s(P8,P10)
s(P9,P11) s(P10,P11)
s(P11,P12)
s(P11,P13) s(P12,P13)
s(P13,P14) s(P12,P14)
s(P13,P15) s(P14,P15)
s(P15,P16) s(P14,P16)
s(P15,P17) s(P16,P17)
s(P17,P18)
s(P17,P19) s(P18,P19)
s(P19,P20) s(P18,P20)
s(P19,P21) s(P20,P21)
s(P21,P22)
s(P21,P23) s(P22,P23)
s(P23,P24) s(P22,P24)
s(P23,P25) s(P24,P25)
s(P25,P26) s(P24,P26)
s(P25,P27) s(P26,P27)
s(P27,P28)
s(P27,P29) s(P28,P29)
s(P29,P30) s(P28,P30)
s(P29,P31) s(P30,P31)
s(P31,P32) s(P30,P32)
s(P31,P33) s(P32,P33) s(P35,P33)
s(P35,P34) s(P33,P34)
s(P37,P35)
s(P37,P36) s(P35,P36) s(P34,P36)
s(P39,P38) s(P37,P38) s(P40,P38)
s(P37,P39)
s(P7,P40) s(P39,P40)
s(P12,P41) s(P10,P41)
s(P8,P42) s(P3,P42)
s(P28,P43) s(P26,P43) s(P51,P43)
s(P36,P44) s(P34,P44)
s(P16,P45) s(P41,P45) s(P47,P45)
s(P42,P46) s(P6,P46) s(P48,P46) s(P49,P46)
s(P20,P47) s(P18,P47) s(P50,P47)
s(P40,P48) s(P38,P48) s(P52,P48)
s(P41,P49) s(P42,P49) s(P53,P49)
s(P22,P50) s(P43,P50)
s(P44,P51) s(P32,P51)
s(P44,P52) s(P51,P52) s(P53,P52)
s(P50,P53) s(P45,P53)
pen(2)
color(#0000FF) m(P3,P1,MA10) m(P1,P8,MB10) f(P1,MA10,MB10)
color(#008000) m(P3,P1,MA11) m(P1,P8,MB11) f(P1,MA11,MB11)
color(#FFA500) m(P3,P1,MA12) m(P1,P8,MB12) f(P1,MA12,MB12)
color(#EE82EE) m(P3,P1,MA13) m(P1,P8,MB13) f(P1,MA13,MB13)
color(aqua) m(P3,P1,MA14) m(P1,P8,MB14) f(P1,MA14,MB14)
pen(2)
color(red) s(P47,P50) abstand(P47,P50,A0) print(abs(P47,P50):,6.89,16.748) print(A0,7.87,16.748)
color(red) s(P49,P53) abstand(P49,P53,A1) print(abs(P49,P53):,6.89,16.522) print(A1,7.87,16.522)
color(red) s(P43,P51) abstand(P43,P51,A2) print(abs(P43,P51):,6.89,16.297) print(A2,7.87,16.297)
color(red) s(P52,P53) abstand(P52,P53,A3) print(abs(P52,P53):,6.89,16.072) print(A3,7.87,16.072)
color(red) s(P46,P48) abstand(P46,P48,A4) print(abs(P46,P48):,6.89,15.846) print(A4,7.87,15.846)
color(red) s(P46,P49) abstand(P46,P49,A5) print(abs(P46,P49):,6.89,15.621) print(A5,7.87,15.621)
color(red) s(P45,P47) abstand(P45,P47,A6) print(abs(P45,P47):,6.89,15.395) print(A6,7.87,15.395)
color(red) s(P48,P52) abstand(P48,P52,A7) print(abs(P48,P52):,6.89,15.17) print(A7,7.87,15.17)
print(min=0.9323099470718064,6.89,14.945)
print(max=1.2949036552904436,6.89,14.719)
\geooff
\geoprint()
-----------------Bound to be disappointing so why wait?
Notiz Profil
Quote
Link