Die Mathe-Redaktion - 23.04.2019 18:54 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
ListenpunktSchwätz / Top 15
ListenpunktWerde Mathe-Millionär!
ListenpunktAnmeldung MPCT Sept.
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 391 Gäste und 23 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von Buri Gockel
Strukturen und Algebra » Gruppen » Hahn-Reihen
Druckversion
Druckversion
Autor
Universität/Hochschule J Hahn-Reihen
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 674
Aus: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2018-11-09

\(\begingroup\)\(\DeclareMathOperator{\Aut}{Aut} \newcommand{\tfae}{\textbf{T.F.A.E.}} \DeclareMathOperator{\codim}{codim} \newcommand{\bop}{\bigoplus} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \newcommand{\eps}{\epsilon} \renewcommand{\K}{\mathbb{K}} \newcommand{\ip}{\langle -,- \rangle} \DeclareMathOperator{\Tr}{Tr} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \DeclareMathOperator{\ord}{ord} \newcommand{\pfam}[1]{(#1)_{v\in\mathfrak{M}_k}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\udl}[1]{\underline{#1}} \DeclareMathOperator{\End}{End} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\CC}{\c{C}} \DeclareMathOperator{\vol}{vol} \newcommand{\CS}{\mathcal{S}} \newcommand{\vpj}{\varphi_j} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \DeclareMathOperator{\rad}{rad} \newcommand{\fam}[1]{(#1)_{i\in I}} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \newcommand{\kxn}{k[x_0,\pts,x_n]} \DeclareMathOperator{\Supp}{Supp} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\im}{im} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \newcommand{\N}{\mathbb{N}} \newcommand{\units}[1]{(\Zx{#1})^\times} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\leg}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\ANF}{K/\Q} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\clKX}{\overline{K}[X]} \newcommand{\LX}{L[X]} \newcommand{\gfib}[2]{#1_{\cl{#2}}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\prou}{\text{ primitive }m \text{-th root of unity }} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\simple}{\text{Let }K'=K(\alpha)\text{ be a simple extension of  }K \text{ with minimal polynomial }\finKX} \newcommand{\Q}{\mathbb{Q}} \renewcommand{\S}{\mathbb{S}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\prp}{\text{ proper }} \newcommand{\lnss}{\text{ locally noetherian Schemes}} \newcommand{\lns}{\text{ locally noetherian Scheme }} \newcommand{\ffe}{\text{ finite field extension }} \newcommand{\fge}{\text{ finite Galois extension }} \newcommand{\fne}{\text{ finite normal extension }} \newcommand{\fse}{\text{ finite separable extension }} \newcommand{\fure}{\text{ finite unramified extension }} \newcommand{\frae}{\text{ finite ramified extension }} \newcommand{\ure}{\text{ unramified extension }} \newcommand{\rae}{\text{ ramified extension }} \newcommand{\tarae}{\text{ tamely ramified extension }} \newcommand{\rain}{\text{ ramification index }} \newcommand{\indeg}{\text{ inertia index }} \newcommand{\SS}[2]{E_2^{p,q}=#1\Longrightarrow #2} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\qcqs}{\text{ quasi-compact quasi-separated }} \newcommand{\oft}{\text{ of finite type }} \newcommand{\loft}{\text{ locally of finite type }} \newcommand{\ofp}{\text{ of finite presentation }} \newcommand{\OX}{\mathcal{O}_X} \newcommand{\OC}{\mathcal{O}_C} \newcommand{\OXmu}{\mathcal{O}_{X,\mu}} \newcommand{\OCx}{\mathcal{O}_{C,x}} \newcommand{\OYx}{\mathcal{O}_{Y,y}} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa_#1} \newcommand{\resx}{\kappa(x)} \newcommand{\mor}[5]{\text{ Let } #1\overset{#2}{\to} #3 \text{ be a }#4 \text{morphism of }#5} \newcommand{\let}[3]{\text{ Let } #1 \text{ be a } #2 \text{ of } #3} \newcommand{\sk}{\{\tau\}} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1,\cdots,T_n]} \newcommand{\Tem}{[T_1,\cdots,T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\Sschemes}{\schemes/S} \newcommand{\kschemes}{\schemes/k} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\Is}{\overset{\sim}{\to}} \newcommand{\oIs}[1]{\overset{#1}{\overset{\sim}{\to}}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\prj}[1]{Proj(#1)} \newcommand{\wlog}{\text{ without losing generality }} \newcommand{\ffoc}{\text{ \text{Let } f\colon C\to S \text{ be a flat family of curves of genus } g}} \newcommand{\mm}{\ff{m}} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\isom}[3]{#1\overset{#2}{\overset{\sim}{\to}}#3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\lmb}{\lambda} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\kms}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\kxn}{k[x_0,\pts,x_n]}\)
Hi.

EDIT2:
Frage hat sich geklärt. Siehe ganz unten.
Ich habe eine Frage an jemanden, der folgende Konstruktion kennt:

Sei \(F\) ein Körper und \((G,<)\) eine totalgeordnete Abelsche Gruppe.
Betrachte die folgende Menge:
\(F((t^G)):=\{\underset{g\in G}{\sum}x_g t^g \colon supp(x_g)\subseteq G\) enthält keine unendlichen absteigenden Teilfolgen.\(\}\)

Zum Beispiel ist \((\mathbb{Q},+)\) eine Abelsche total geordnete Gruppe, und die Folge \(1,\frac{1}{2},\frac{1}{3},\frac{1}{4},\frac{1}{5},\cdots\)
ist absteigend.

Das bedeutet, dass für beispielsweise \(F:=\mathbb{Z}/5\)
der folgende formale Ausdruck \(\overline{1}t+\overline{2}t^\frac{1}{2}+\overline{3}t^\frac{1}{3}+\cdots\)
kein Element von \(\mathbb{Z}/p((t^\mathbb{Q}))\) ist, da die Menge \(supp(x_g)=\{\frac{1}{n}\in\mathbb{Z}_{(5)}\}\)
eine absteigende Teilfolge, nämlich
\(1>\frac{1}{2}>\frac{1}{3}>\frac{1}{4}>\frac{1}{6}>\frac{1}{7}>\frac{1}{8}>\frac{1}{9}>\frac{1}{11}>\cdots\) enthaelt.

Dann ist \(F((t^G))\) ein Körper bezüglich
formaler Addition und Multiplikation.

Fragen:
1. Hat dieser Körper einen Namen? Gibt es Literatur hierzu?
2. Es liegt eine gewisse Ähnlichkeit zu Gruppenringen vor und doch sehe ich nicht unmittelbar, wie man diesen Körper als Gruppenring auffassen könnte...
4. Ist das ein Beispiel einer allgemeineren Konstruktion?

Grüße

EDIT1:
3.Was hat es mit der Bedingung an \(supp(x_g)\) auf sich?
Diese Frage hat sich geklärt:

Man definiert eine Bewertung auf
\(F((t^G))\) wie folgt:
\(v\colon F((t^G))\to G\cup \{\infty\}\)
\(v(\underset{g\in G}{\sum}x_g t^g\neq 0):=min\{supp(x_g)\}\)
\(v(0):=\infty\).
Man moechte also die Existenz des Minimums sicherstellen.

EDIT2:
Ich bin ...Hätte weiterlesen sollen:
Diese Objekte heißen "Hahn Reihen". Steht im Skript weiter unten.


-----------------
"Jedes Gehirn kann Fragen beantworten. Es geht darum die richtigen Fragen zu finden."
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_ hat selbst das Ok-Häkchen gesetzt.
Neues Thema [Neues Thema]  Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2019 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]