Die Mathe-Redaktion - 23.09.2019 12:01 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte / Top 15
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
Listenpunkt? im neuen Schwätz
ListenpunktWerde Mathe-Millionär!
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps

Bücher
Englische Bücher
Software
Suchbegriffe:
Mathematik bei amazon
Naturwissenschaft & Technik
In Partnerschaft mit Amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 511 Gäste und 27 Mitglieder online.

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von Buri Gockel
Strukturen und Algebra » Moduln » Wieso projektive Moduln?
Druckversion
Druckversion
Autor
Universität/Hochschule J Wieso projektive Moduln?
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 345
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2019-08-19


Hallo,

wahrscheinlich werde ich das in der Zukunft mit mehr Wissen sowieso noch besser verstehen, aber jetzt schon mal meine Frage: Wieso sind projektive Moduln interessante Objekte? Weshalb interessiert man sich dafür?

Ich kenne die üblichen Charakterisierungen und auch z.B. auch kleine Sprüche wie "A projective module is the next best thing to a free module." - hoffe aber, dass die Algebraiker auf diesem Forum mich noch genauer aufklären können.  smile

(Und wenn wir schon dabei sind, würde mich die gleiche Frage zum dualen Objekt - injektive Moduln - auch interessieren.)


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei



  Profil  Quote  Link auf diesen Beitrag Link
DavidM
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 11.06.2012
Mitteilungen: 236
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2019-08-19


Hallo Kezer,

ein Aspekt (sicher nicht der einzige) ist folgendes: Projektive Moduln sind in vielen Zusammenhängen im Wesentlichen genauso nützlich wie freie. Das meiste, was für freie Moduln funktioniert, funktioniert auch für projektive Moduln. Aber es ist oft wesentlich einfacher, zu zeigen, dass ein Modul projektiv ist, als zu zeigen, dass er frei ist. Zum Beispiel: Es sei $R$ ein (kommutativer) Ring und $M$ ein $R$-Modul, sodass für jedes Primideal $P \subset R$ die Lokalisierung $M_P$ ein freier $R_P$-Modul ist. Dann ist $M_P$ insbesondere ein flacher $R_P$-Modul und man kann zeigen, dass dann $M$ ein flacher $R$-Modul ist. Wenn jetzt $R$ noethersch und $M$ endlich erzeugt ist, dann ist flach äquivalent zu projektiv, also ist unter diesen Voraussetzungen jeder lokal freie Modul projetiv, aber bei weitem nicht jeder lokal freie Modul ist wieder frei.



  Profil  Quote  Link auf diesen Beitrag Link
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 345
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, vom Themenstarter, eingetragen 2019-08-19


Ah sehr cool, ich würde sagen das erklärt schon den Slogan "A projective module is the next best thing to a free module." sehr gut - danke!

(P.S.: Ich saß dieses Semester bei dir in Algebra 2  razz )


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei



  Profil  Quote  Link auf diesen Beitrag Link
Saki17
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 09.09.2015
Mitteilungen: 612
Aus: Fernost
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2019-08-21


Eine eher spontane Antwort: Schlag mal den Begriff "projektive Auflösung" nach.



  Profil  Quote  Link auf diesen Beitrag Link
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 345
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, vom Themenstarter, eingetragen 2019-08-21


Danke, spontane Antworten sind gut!

Das sind cool aus, aber wahrscheinlich weiß ich bisher noch nicht genug Algebra, um das wirklich schätzen zu können.


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei



  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 940
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, eingetragen 2019-08-21

\(\begingroup\)\( \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\color{orange}{\underline{\color{black}{\sc{T}\!heorem\tx{}#1}}}} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\underline{\color{orange}{\mathscr{P}\!roof}\colon}} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1}\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\underline{\color{orange}{\mathfrak{Q}}.\color{orange}{\mathfrak{E}}.\color{orange}{\mathfrak{D}}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\underline{\c{Q}\!uestion\colon}} \newcommand{\answ}{\underline{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \)
Hi. Gute Frage. Vielleicht sollte man hierzu Experten befragen(also nicht mich, sondern eher einen Dozenten, oder auf Stackexchange/Mathoverflow).

In der Algebraischen Geometrie kommt es oft vor, dass man keine freien Moduln bekommt, sondern nur projektive.

Ich gebe hierzu ein Beispiel, welches allerdings etwas Algebraische Geometrie voraussetzt:

Du kannst das Beispiel auch lesen ohne genau zu verstehen was die Begriffe bedeuten oder dir nebenher die Definitionen rausschreiben.

Wenn $\FF$ eine Garbe auf einem Schema $X$. Dann kann man die Garbenkohomologie $H^p(X,\FF)$ definieren welche ein Hilfsmittel darstellt, um die globalen Schnitte $\Gamma(X,\FF)=H^0(X,\FF)$ von $\FF$ zu untersuchen.

Jetzt stellt sich die natürliche Frage, wie sich die Kohomologie unter morphismen $\xi\colon \wt{X}\to X$ verhält.

Damit meine ich folgendes:
Es sei $f\colon X\to \sp{A}$ ein Schema über $A$ und $v\colon A\to B$ ein Ringmorphismus.
Dann kann man den Pullback $\wt{f}\colon \wt{X}\defeq X\tm_{\sp{A}} \sp{B}\to \sp{B}$ und $\xi\colon \wt{X}\to X$ betrachten.

Ist nun $\FF$ eine Modulgarbe auf $X$, dann kann man den Pullback $\xi^*\FF$ von $\FF$ entlang $\xi$ betrachten.

Es stellt sich nun die natürliche Frage, wie die Kohomologien $H^p(X,\FF)$ und $H^p(\wt{X},\xi^*\FF)$ miteinander zusammenhängen.

Ein Ansatz diese Frage zu beantworten geht wie folgt:
Sei hierzu $f\colon X\to \sp{A}$ quasi-kompakt und separiert, und sei $\FF$ eine quasi-kohärente Modulgarbe auf $X$. Sei $\c{U}=\bigcup_i U_i$ eine offene affine Cech-Überdeckung von $X$.
Dann kann man $H^\bul(X,\FF)$ als die Homologie des Cech-Komplexes $C^\bul(\c{U},\FF)$ ausrechnen. (Wie genau das geht ist erstmal nicht so wichtig, das ist pure homologische Algebra).

Die überdeckung $\c{U}$ kann man entlang $\xi$ zurückziehen, und bekommt so eine offene affine Cech-Überdeckung von $\wt{X}$:
$\xi^*\c{U}\colon \wt{X}=\bigcup U_i\tm_{\sp{A}}\sp{B}$.
Der zugehörige Cech Komplex $C^\bul(\xi^*\c{U},\xi^*\FF)$ berechnet die Kohomologien $H^\bul(\wt{X},\xi^*\FF)$.

Es besteht nun folgende fundamentale Relation:
$C^\bul(\xi^*\c{U},\xi^*\FF)\cong C^\bul(\c{U},\FF)\ot_A B$.

Das bedeutet:
Kennt man den Komplex $C^\bul(\c{U},\FF)$, dann kann man damit nicht nur die Kohomologie von $H^\bul(X,\FF)$, sondern die Kohomologie aller Pullbacks berechnen indem man nur den Komplex mit $A\to B$ tensoriert!

Nun gibt es ein Theorem, welches unter dem namen Grauert-Grothendieck in der Literatur zu finden ist, welches - unter bestimmten Voraussetzungen den Komplex $C^\bul(\c{U},\FF)$ "verbessert".

Die Aussage ist die folgende:

$\Thmn{\tx{(Grauert-Grothendieck)}}$
Sei $f\colon X\to Y=\sp{A}$ ein eigentlicher Morphismus und $A$ Noethersch.
Sei $\FF$ eine kohärente Modulgarbe über $X$ welche flach über $\c{O}_Y$ ist (zum Beispiel $f$ eigentlich und flach und $\FF$ ein Vektorbuendel).

Dann gibt es einen Komplex von projektiven $A$-Moduln
$0\to P^0\to P^1\to \pts \to P^d\to 0$ sodass für jede $A$-Algebra
$v\colon A\to B$ gilt
$H^p(\wt{X},\xi^*\FF)\cong H^p(P^\bul\ot_A B)$

Desweiteren kann man $d$ so wählen, dass $d$ die größte natürliche Zahl ist, sodass $H^p(X,\FF)\not= 0$ gilt (diese existiert, selbst wenn $X$ unendlich dimensional ist, wegen der Quasi-Kompaktheit. Man kann einen endlichen Cech Komplex nehmen).

Wenn $d'\geq 0$ so definiert ist, dass $H^p(X_y,\FF\mid_{X_y})=0$ ist (Die Kohomologie auf den Fasern) für alle $y\in Y\defeq \sp{A}$, und $p<d'$, dann gilt $d'\leq d$ und mann kann $P^\bul$ so wählen, dass $P^i=0$ gilt außer für $i=d'\cos d$, also der Komplex ist supported in $d'\leq \pts \leq d$.

SUBTILITÄT
Nun kann man desweiteren annehmen, dass alle $P^i$ frei sind in allen Graden außer $d'$. Dort ist der Modul nur projektiv.

Wenn man den Satz auf eine lokale Aussage anwenden will - was sehr oft der Fall ist -, dann kann man durch lokalisieren erreichen, dass auch $P^{d'}$ frei ist! Und genau das meint man wohl, wenn man sagt, dass "projektiv fast so gut wie frei " ist.

Der Beweis des Theorems zeigt explizit wie die Freien Moduln konstruiert werden und warum in dem einen Grad nur Projektivität gegeben ist.

Man geht erstmal von dem Cech Komplex aus und beachtet - wie oben bemerkt, dass $H^p(\wt{X},\xi^*\FF)\cong H^p(C^\bul\ot_A B)$ gilt, wo $C^\bul=C^\bul(\c{U},\FF)$ ist.

Nun weiß man per Definition, dass $C^\bul$ ein Komplex von $A$-Moduln ist, und wegen der Quasi-Kompaktheit kann man die Existenz eines $d$'s  nachweisen wie oben definiert.

Aus $H^p(X,\FF)=H^p(C^\bul)=0$ folgt nicht automatisch $C^p=0$. Man kann aber den Komplex $C^\bul$ von oben abschneiden (truncation from above) indem man zeigt, dass der Komplex quasi-isomorph zu einem der Form $0\to C'^0\to \pts C'^d\to 0$ ist.

Man kann dann mit einem anderen Lemma aus der Homologischen Algebra den Komplex durch einen Komplex von freien Moduln ersetzen.

In dem Moment in dem man aber von unten abschneidet kriegt man jedoch nur noch einen a priori projektiven Modul.
Das liegt daran, dass man einen Quotienten bildet.

Sei $0\to C^0\to C^1\to \pts C^{d'}\to C^d\to 0$ der Komplex der freien Moduln, $d,d'$ wie oben definiert.

$\Lemn{\tx{(truncation from below)}}$
Sei $I^{d'} \defeq \ker(C^{d'-1}\to C^{d'})$ der Kern des Differentials.
Dann ist $\tau_{\geq d'}(C^\bul)\colon 0\to C^{d'}/{I^{d'}}\to C^{d'+1}\to \pts \to C^d\to 0$ quasi-isomorph zu $C^\bul$ - das heißt per definitionem, dass sich die Homologie nicht ändert - und projektiv im Grad $d'$.

Das ist der Schritt bei dem die Freiheit verloren geht.
Durch Lokalisierungen kann diese wiederhergestellt werden, falls das Problem auf das man den Satz anwenden will lokal ist. Das heißt "Projektiv ist oftmals fast so gut wie frei"

 

 

PS Sicherheitshalber $\tm\defeq \ot$
 
 
*Die Cech Kohomologie kann man eigentlich auch als einen abgeleiteten Funktor auffassen, aber darum geht es hier nicht.




[Die Antwort wurde nach Beitrag No.3 begonnen.]


-----------------
Poincaré and Erdős went to an étalé party at Čech's
with an adèle and an étale as gifts. Čech was happy.
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 345
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.6, vom Themenstarter, eingetragen 2019-08-21


Exzellente Antwort! Danke!

Muss aber zugeben, dass ich davon gerade wirklich nicht so viel verstehe. Werde es definitiv noch einmal lesen, wenn ich ein wenig mehr Erfahrung habe!


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei



  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 940
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.7, eingetragen 2019-08-21


2019-08-21 20:55 - Kezer in Beitrag No. 6 schreibt:
Exzellente Antwort! Danke!

Muss aber zugeben, dass ich davon gerade wirklich nicht so viel verstehe. Werde es definitiv noch einmal lesen, wenn ich ein wenig mehr Erfahrung habe!

Nunja, so exzellent ist sie leider nicht, denn ich kann nicht wirklich Intuition dazu vermitteln, oder ein einfaches Beispiel geben.
Aber wenn du einmal Garben-Kohomologie lernen solltest, dann kannst du auf dieses Beispiel zurückkommen. Ich fand es als ich dieses Theorem gelernt habe erstaunlich, dass die Projektivität in genau einem Grad nicht gegeben ist.
Vielleicht findet sich ja noch jemand, der die Frage besser beantworten kann.

Die Antwort mit projektiven und injektiven Auflösungen von Saki finde ich sehr gut. Das kannst Du Dir auch noch anschauen.
Viel Erfolg noch beim Lernen
XST



  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 940
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.8, eingetragen 2019-08-21

\(\begingroup\)\( \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\color{orange}{\underline{\color{black}{\sc{T}\!heorem\tx{}#1}}}} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\underline{\color{orange}{\mathscr{P}\!roof}\colon}} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1}\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\underline{\color{orange}{\mathfrak{Q}}.\color{orange}{\mathfrak{E}}.\color{orange}{\mathfrak{D}}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\underline{\c{Q}\!uestion\colon}} \newcommand{\answ}{\underline{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \)
Da meine erste Antwort nicht so hilfreich war möchte ich noch eine Antwort versuchen.

Es gibt verschiedene Sichtweisen.
Aus der Sicht eines $\Hom$ Funktors ergibt sich folgende Sichtweise.

Wie sicherlich bekannt ist kann man jedes Objekt $X$ durch einen seiner $\Hom$-Funktoren $\Hom(X,-)$ oder $\Hom(-,X)$ ersetzen.

Nun ist die Kategorie der Moduln über einem Ring $A$ eine Abelsche Kategorie. Daher macht es Sinn von Exakten Folgen zu sprechen.

Es entsteht also die natürliche Frage, unter welchen Umständen die $\Hom$-Funktoren exakt sind, das heißt unter welchen Umständen sie exakte Folgen auf exakte Folgen schicken.

Ein Modul $P$ ist nun per Definition genau dann projektiv, wenn $\Hom(P,-)$ ein exakter Funktor ist und $Q$ ist genau dann injektiv, wenn $\Hom(-,Q)$ exakt ist.

Das ist ein Standpunkt. Jedoch gibt dieser Standpunkt nicht viel Intuition.
Die beste Intuition bekommt man wohl wenn man nach geometrischer Intuition sucht.
Diese gibt es indem man Moduln als geometrische Objekte auffasst.
Wie du vielleicht weißt sind Ringe nichts anderes als geometrische Räume (Schemata). Moduln sind dann Vektorbündel und ihre Verallgemeinerungen.


Ich versuche es mal verständlich zu erklären:
Nehmen wir einen Ring $A$, zum Beispiel $B=\C[x,y]/{(x^3+y^3-1)}$ oder einfach $A=\C[x,y]$.
Jeden Ring kann man durch die $\sp{-}$-Konstruktion eindeutig als ein geometrisches Objekt - affines Schema - betrachten.
Das Affine Schema $\sp{A}$ ist formal einfach nur die Menge aller Primideale in $A$ mit einer gewissen Topologie versehen die sich rein algebraisch definieren lässt. Anschaulich kann man sich $\sp{\C[x,y]}$ vorstellen als die affine Ebene $\C^2$. Man schreibt auch $\A_{\C}^2$.
Das affine Schema $\sp{B}=\sp{\C[x,y]/{(x^3+y^3-1)}}$ ist ein abgeschlossenes Unterschema von $\A_{\C}^2$. Es ist die Kurve in der affinen "Ebene" $\C^2$ welche durch die Gleichung $x^3+y^3-1$ rausgeschnitten wird.

Wie gesagt besteht das Spektrum $\sp{A}$ eines Ringes $A$ genau aus seinen Primidealen. Wir wissen auch, dass ein Ideal trivial ist, genau dann wenn es ein invertierbares Element enthält. Das bedeutet, dass wenn wir anfangen Elemente eines Ringes zu invertieren, dann werden die Primideale weniger. Das bedeutet, das Schema wird kleiner.
Schließlich besteht das Schema eines Körpers indem ja alle Elemente invertierbar sind nur noch aus einem Punkt. Die Topologie wird dabei genau so definiert, dass eine Lokalisierung eines Rings $A$ an einem Element $f$ eine offene Umgebung $U=D(f)=\sp{A_f}$ genau der Primideale $\pr$(=Punkte) ist mit $f\not\in \pr$.
Offene Teilmengen des Schemas erhält man durch verkleben solcher $D(f)$.
 
Dann kann man diesem Modul eine Modulgarbe $\c{M}\defeq \wt{M}$ zuordnen.
Diese Konstruktion ist verträglich mit der Einschränkung auf offene Untermengen in dem folgenden Sinn.

Wenn man zu einer offenen Untermenge $U=D(f)\sube X$ übergeht, dann kann man $\c{M}$ auf diese offene Untermenge einschränken.

Es ist zu erwarten, dass $\c{M}\cong \wt{M_f}$ gilt, und das ist tatsächlich der Fall.
Man kann außerdem zeigen, dass jede Modulgarbe $\c{M}$ auf $\sp{A}$ welche lokal  - also eingeschränkt auf $D(f)$ die Form $\wt{M(f)}$ hat für einen Modul $M$ und ein Element $f\in A$ sogar global diese Form hat, das bedeutet es gibt einen Modul $M$ sodass $\c{M}=\wt{M}$ und $M(f)=M_f$.

Solche Moduln heißen quasi-kohärent.

Geometrisch sind dies Verallgemeinerungen von Vektorbündeln.
Ein Vektorbündel ist nämlich definiert als eine quasi kohärente Modulgarbe, welche lokalfrei ist. Das bedeutet, eingeschränkt auf
$D(f)$ hat sie die Form $\c{O}_{\sp{A_f}}^n=\wt{A_f^n}$. (Es gibt auch eine geometrische Definition die der algebraischen äquivalent ist siehe "geometrische Vektorbündel in der Algebraischen Geometrie")
Da nun unser Beispiel $A=\C[x,y]$ Noethersch ist sehen wir mit DavidM's Kommentar, dass lokalfreie Moduln welche endlich erzeugt sind projektiv sind.
Das bedeutet, in diesem Setup sind endlich erzeugte projektive Moduln das gleiche wie Vektorbündel.
Freie Moduln entsprechen trivialen Vektorbündeln.
Nun weiß man aus dem topologischen oder komplex Analytischen Kontext, dass der Affine Raum keine nicht trivialen Vektorbündel zulässt.

Das führt zu der Vermutung:

$\color{orange}{\udl{\color{black}{\sc{C}\!onjecture (\tx{Serre})}}}$
Jeder endlich erzeugte projektive Modul über einem Polynomring ist frei.

Der Beweis dieser Vermutung wurde von Quillen und unabhängig von Suslin erbracht. Der Beweis ist alles andere als einfach: Quillen bekam die Fields Medaille dafür.

Das Problem ist, dass eine topologische Trivialisierung nicht unbedingt zu einer algebraischen Trivialisierung führt.

Du kannst dir also Projektive Moduln als Freie Moduln mit twist vorstellen.

Schau auch mal diese Diskussion an:
math.stackexchange.com/questions/585664/intuitive-understanding-of-projective-modules

Viele Grüße



\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 345
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.9, vom Themenstarter, eingetragen 2019-08-22

\(\begingroup\)\( \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\color{orange}{\underline{\color{black}{\sc{T}\!heorem\tx{}#1}}}} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\underline{\color{orange}{\mathscr{P}\!roof}\colon}} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1}\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\underline{\color{orange}{\mathfrak{Q}}.\color{orange}{\mathfrak{E}}.\color{orange}{\mathfrak{D}}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\underline{\c{Q}\!uestion\colon}} \newcommand{\answ}{\underline{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \)
Vielen Dank für Deine ausführlichen Antworten, XST - sie sind wirklich gut!

2019-08-21 22:27 - xiao_shi_tou_ in Beitrag No. 7 schreibt:
Nunja, so exzellent ist sie leider nicht, denn ich kann nicht wirklich Intuition dazu vermitteln, oder ein einfaches Beispiel geben.

Das liegt aber keinesfalls an Dir, sondern an mir und meinen fehlenden Kenntnissen.

2019-08-21 23:52 - xiao_shi_tou_ in Beitrag No. 8 schreibt:
Es gibt verschiedene Sichtweisen.
Aus der Sicht eines $\operatorname{Hom}$ Funktors ergibt sich folgende Sichtweise.

Wie sicherlich bekannt ist kann man jedes Objekt $X$ durch einen seiner $\operatorname{Hom}$-Funktoren $\operatorname{Hom}(X,-)$ oder $\operatorname{Hom}(-,X)$ ersetzen.

Nun ist die Kategorie der Moduln über einem Ring $A$ eine Abelsche Kategorie. Daher macht es Sinn von Exakten Folgen zu sprechen.

Es entsteht also die natürliche Frage, unter welchen Umständen die $\operatorname{Hom}$-Funktoren exakt sind, das heißt unter welchen Umständen sie exakte Folgen auf exakte Folgen schicken.

Ein Modul $P$ ist nun per Definition genau dann projektiv, wenn $\operatorname{Hom}(P,-)$ ein exakter Funktor ist und $Q$ ist genau dann injektiv, wenn $\operatorname{Hom}(-,Q)$ exakt ist.

Das ist ein Standpunkt. Jedoch gibt dieser Standpunkt nicht viel Intuition.

Genau dieser Standpunkt wird im Dummit&Foote vermittelt (womit ich letzte Woche über projektive Moduln gelernt habe). Damit wurden u.a. Lifts z.B. ziemlich gut motiviert.
Aber wie du sagst, liefert das (zumindest mir) nicht so viel Intuition.

Deine Antwort ist sehr verständlich für jemanden, der noch nichts von Algebraischer Geometrie kann (e.g. mich)! Trotzdem sind mir ein paar Sachen nicht klar - ich hoffe also die folgenden Fragen sind nicht alle trivial.

2019-08-21 23:52 - xiao_shi_tou_ in Beitrag No. 8 schreibt:
Es ist zu erwarten, dass $\mathcal{M}\cong \tilde{M_f}$ gilt, und das ist tatsächlich der Fall.

Wahrscheinlich habe ich den Begriff der Modulgarbe nicht komplett verstanden. Wieso ist das zu erwarten? Ist das nicht nur lokal zu erwarten? Also wieso ist $\mathcal{M}$ lokal zu deuten?

2019-08-21 23:52 - xiao_shi_tou_ in Beitrag No. 8 schreibt:
Man kann außerdem zeigen, dass jede Modulgarbe $\mathcal{M}$ auf $\operatorname{Spec}{A}$ welche lokal  - also eingeschränkt auf $D(f)$ die Form $\tilde{M(f)}$ hat für einen Modul $M$ und ein Element $f\in A$ sogar global diese Form hat, das bedeutet es gibt einen Modul $M$ sodass $\mathcal{M}=\tilde{M}$ und $M(f)=M_f$.

Habe diese Notation denke ich noch nicht gesehen - was bedeutet $M(f)$?

Die Vermutung von Serre ist wirklich schön! Und geometrisch motiviert, gefällt mir! Noch zwei Fragen zum Abschluss:

- Du hast fast ausschließlich über projektive Moduln gesprochen. Wie ist es mit injektiven Moduln?
- Wie bekommst Du es auf MP hin, in $\LaTeX$ Abkürzungen verwenden zu können?


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 940
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.10, eingetragen 2019-08-22

\(\begingroup\)\( \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\color{orange}{\underline{\color{black}{\sc{T}\!heorem\tx{}#1}}}} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\OX}{\c{O}_X} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\underline{\color{orange}{\mathscr{P}\!roof}\colon}} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1}\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\underline{\color{orange}{\mathfrak{Q}}.\color{orange}{\mathfrak{E}}.\color{orange}{\mathfrak{D}}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\underline{\c{Q}\!uestion\colon}} \newcommand{\answ}{\underline{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\c{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}[2]{\Hom(#1,#2)} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \)
Sorry, ich hab vergessen die Einschränkung hinzuschreiben.
Es sollte heißen:
"Es ist zu erwarten, dass $\c{M}\mid_{D(f)}\cong \wt{M_f}$ gilt."
Wenn $\c{M}=\wt{M}$ ist auf $X=\sp{A}$, dann kann man durch Lokalisierung von $A$ an einem Element $f$ zu einer kleineren offenen Menge $D(f)$ von $X$ übergehen welche gleich $D(f)=\sp{A_f}$ ist. (Primideale werden durch invertieren gekillt. Umso mehr Elemente man invertiert umso kleiner wird die Menge. Sogesehen sind die $D(f)$ die größten offenen Mengen die man algebraisch definieren kann. Möchte man größere offene Teilmengen, dann kann man mehrere $D(f)$ zusammenkleben, das nur zur Intuition).

Man kann nun $\c{M}$ auf die offene Menge $D(f)$ einschränken.
Wenn die Konstruktion $\wt{-}$ mit solchen Einschränkungen kompatibel ist, dann würde man also erwarten, dass $\c{M}\mid_{D(f)}$ die Form $\wt{M(f)}$ hat, wobei ich mit $M(f)$ einfach nur einen Modul bezeichne, und $-(f)$ nur anzeigen soll, dass dieser vermutlich von $f$ abhängt (das ist keine Standard Notation und ich wollte nicht $M_f$ schreiben, weil das schon für die Lokalisierung steht.)
Nehmen wir also an die Einschränkung von $\c{M}$ auf $D(f)$ hat die Form $\wt{M(f)}$. Dann muss wegen $D(f)=\sp{A_f}$ der Modul $M(f)$ ein $A_f$-Modul sein. Also ist zu erwarten, dass $M(f)=M_f$ ist, und das ist tatsächlich der Fall.

Das ist mehr oder weniger die Definition von $\wt{-}$.
Es gilt nämlich:
$\Prop$
Sei $M$ ein $A$-Modul.
Dann gibt es auf $X=\sp{A}$ genau eine quasi-kohärente Garbe $\c{M}$ mit $\c{M}(D(f))=M_f$.

Oben habe ich die Eindeutigkeit gezeigt, und die Existenz folgt aus $\c{M}(D(f))$ indem man mit inversen limes verklebt:
$\c{M}(U)\defeq \varprojlim_{D(f)\sube U} \c{M}(D(f))$.

Quasi Kohärenz bedeutet einfach, dass diese Konstruktion $\wt{-}$ mit Einschränkungen auf offene Teilmengen kompatibel ist, also dass $\c{M}\mid_{D(f)}\cong \wt{M_f}$ gilt.

Beachte, dass jede quasi-kohärente Garbe $\c{M}$ auf einem affinen schema $\sp{A}$- also eine die Lokal  die Form $\wt{M(f)}$ hat wo $M(f)$ irgendwelche $A_f$-Moduln sind - bereits die Form $\c{M}=\wt{M}$ hat und es gilt $M=\Gamma(X,\c{M})$.

Ich hoffe das war verständlich.

Latex Befehle kannst du in dein Latex Profil schreiben.
Gehe auf dein Profil und dann auf "Editiere Persönliche Daten".

Viele Grüße  
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 940
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.11, eingetragen 2019-08-22


hi.
Wie es mit injektiven Moduln aussieht hab ich mir noch nicht überlegt. Wahrscheinlich ist es für die Intuition auch am besten nach geometrischer Intuition zu suchen. Vielleicht kann man Baers Kriterium in geometrischen Begriffen deuten?

Ansonsten schau mal bei Mathoverflow-stackexchange.

Ich frag mal einen Experten falls mir hierzu nichts einfällt. Sicherlich kann hier auf dem MP auch jemand etwas dazu sagen (der mehr Ahnung als ich hat :D).

Ansonsten ist immernoch der Rat von Saki sehr gut, Injektive und Projektive Auflösungen sind schon für sich genommen eine ausreichende Motivation.
Man bekommt halt nicht immer freie Auflösungen.

Mir gefällt das Thema sehr gut, da ich selbst noch etwas mehr geometrische Intuition in Sachen Modulgarben hätte.

Viele Grüße
XST



  Profil  Quote  Link auf diesen Beitrag Link
Dune
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 30.03.2009
Mitteilungen: 3050
Aus: Rostock
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.12, eingetragen 2019-08-22


Eine besonders nützliche (sogar charakterisierende) Eigenschaft projektiver/injektiver Moduln ist folgende:

Ist ein projektiver Modul $P$ ein Quotient eines Moduls $M$, dann ist $P$ sogar ein direkter Summand von $M$. Genauso ist ein injektiver Modul $I$ genau dann ein Untermodul von $M$, wenn $I$ ein direkter Summand von $M$ ist.

Übrigens lebt die (nicht-modulare) Darstellungstheorie endlicher Gruppen wesentlich von der Tatsache, dass sämtliche Moduln einer Gruppenalgebra $\mathbb{K} G$ (wobei die Charakteristik von $\mathbb{K}$ nicht die Ordnung von $G$ teilt) sowohl injektiv als auch projektiv sind. Im Gegensatz dazu sind freie $\mathbb{K} G$-Moduln relativ selten.

VG Dune



  Profil  Quote  Link auf diesen Beitrag Link
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 345
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.13, vom Themenstarter, eingetragen 2019-08-26


Hi,

sorry für die späte Antwort - war die letzte Zeit ziemlich beschäftigt.

XST, vielen Dank für die ausführliche Erklärung, es ist nun klarer!
Baer geometrisch zu deuten ist eine coole Idee! Wenn ich mehr Zeit (und Erfahrung) habe, werde ich das mal anreißen. Zu MSE/Mathoverflow, da habe ich bereits teilweise geschaut, aber weil Du so gute Antworten auf MP gegeben hast, wollte ich auch hier nochmal nachfragen  wink

Dune, danke, das war sehr hilfreich!

2019-08-22 21:31 - Dune in Beitrag No. 12 schreibt:
Eine besonders nützliche (sogar charakterisierende) Eigenschaft projektiver/injektiver Moduln ist folgende:

Ist ein projektiver Modul $P$ ein Quotient eines Moduls $M$, dann ist $P$ sogar ein direkter Summand von $M$. Genauso ist ein injektiver Modul $I$ genau dann ein Untermodul von $M$, wenn $I$ ein direkter Summand von $M$ ist.

Oh ja! Nach Dummit&Foote kommen hierher sogar die Namen "projektiv" und "injektiv".

2019-08-22 21:31 - Dune in Beitrag No. 12 schreibt:
Übrigens lebt die (nicht-modulare) Darstellungstheorie endlicher Gruppen wesentlich von der Tatsache, dass sämtliche Moduln einer Gruppenalgebra $\mathbb{K} G$ (wobei die Charakteristik von $\mathbb{K}$ nicht die Ordnung von $G$ teilt) sowohl injektiv als auch projektiv sind. Im Gegensatz dazu sind freie $\mathbb{K} G$-Moduln relativ selten.

Das ist ein sehr hilfreicher Kommentar. Im Dummit&Foote stand zwar drin, dass $\mathbb{K}[G]$ projektiv und injektiv ist - aber (dummerweise!) habe ich keinen Gedanken daran verloren, dass das eine wichtige Eigenschaft für die Darstellungstheorie ist! Danke sehr!

Vielleicht ein wenig genauer: Welche Eigenschaften werden denn der Projektivität und Injektivität verdankt?


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei



  Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 940
Aus: Grothendieck Universum
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.14, eingetragen 2019-08-26 17:01


Schön, dass sich jetzt noch ein Experte gemeldet hat :).
Dune hat weit aus mehr Erfahrung mit kommutativer Algebra als ich.

Leider kann ich mit meiner ursprünglichen Idee Baers Kriterium geometrisch zu deuten nicht viel anfangen. Es scheint mir auch, dass man Injektive Moduln mehr als technische Hilfsmittel einsetzt und sie nicht um ihrer selbst Willen erforscht.

Ich hab auch noch nie wirklich mit Injektiven Modulgarben zu tun gehabt in dem Sinn, dass sie geometrisch etwas bedeutet haben, aber ich bin auch nur ein Amateur.

In Lams Buch finden sich Beispiele injektiver Moduln, falls dich das interessiert.

Viele Grüße



  Profil  Quote  Link auf diesen Beitrag Link
Dune
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 30.03.2009
Mitteilungen: 3050
Aus: Rostock
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.15, eingetragen 2019-08-26 19:12


@xiao_shi_tou_ Das ehrt mich natürlich sehr, aber bezogen auf kommutative Algebra würde ich das so nicht unterschreiben. wink Eigentlich habe ich mich die letzten Jahre so gut wie nur noch mit endlich-dimensionalen (idR nicht-kommutativen) Algebren beschäftigt. Gerade auf diesem Gebiet sind projektive und injektive Moduln wichtig, da sie deutlich leichter zugänglich sind als allgemeine Moduln und im Gegensatz zu letzteren sogar klassifizierbar sind.

Dass injektive Moduln im Allgemeinen nicht so präsent sind wie projektive Moduln, dürfte hauptsächlich daran liegen, dass man oft nur endlich erzeugte Moduln betrachtet, aber über vielen Ringen (etwa über $\mathbb{Z}$) gar keine endlich erzeugten injektiven Moduln existieren. Bei endlich-dimensionalen Algebren über Körpern (im Folgenden kurz Algebren) ist das anders: Wir haben für jede Algebra eine natürliche Dualität zwischen endlich erzeugten Links- und Rechtsmoduln, welche injektive auf projektive Moduln, bzw. projektive auf injektive Moduln abbildet. Es gibt für Algebren daher genauso viele endlich erzeugte injektive wie projektive Moduln (in jeder beliebigen Dimension).

Außerdem haben injektive und projektive Moduln über Algebren eine besonders einfache Struktur: Während es im Allgemeinen völlig aussichtslos ist, alle endlich erzeugten Moduln einer gegebenen Algebra zu klassifizieren, ist das für projektive und injektive Moduln (zumindest in der Theorie) kein so großes Problem: Jeder endlich erzeugte projektive/injektive Modul über einer Algebra zerfällt auf eindeutige Weise in eine direkte Summe unzerlegbarer projektiver/injektiver Moduln, von denen es jeweils bis auf Isomorphie nur endlich viele gibt. Man muss also nur endlich viele projektive/injektive Moduln einer Algebra finden, um alle (endlich erzeugten) zu kennen.

@Kezer Der letzte Punkt beantwortet hoffentlich auch deine Frage aus #13, denn in der beschriebenen Situation (einer "halbeinfachen" Gruppenalgebra) sind also sämtliche endlich erzeugte Moduln klassifizierbar. Auf dieser Tatsache fußt die gesamte Charaktertheorie endlicher Gruppen. In der Charaktertheorie wird außerdem (grob gesagt) gezeigt, dass sämtliche $\mathbb{C} G$-Moduln schon durch die "Charaktertafel" von $G$ bestimmt sind. Das erlaubt einem wiederum mit Charakteren anstelle von Moduln zu arbeiten.

Außerdem muss natürlich erwähnt werden, dass wir allgemeine Moduln oft durch injektive/projektive Moduln approximieren können: Jeder Modul hat eine eindeutig bestimmte "injektive Hülle" und jeder endlich erzeugte Modul über einer Algebra hat eine eindeutige "projektive Decke". Um einen gegebenen Modul zu untersuchen kann es sehr sinnvoll sein, zunächst seine injektive Hülle oder seine projektive Decke zu bestimmen. Das kann wiederum nach dem Ausschlussverfahren gemacht werden, sofern man schon alle injektiven oder projektiven Moduln über dem jeweiligen Ring kennt.



  Profil  Quote  Link auf diesen Beitrag Link
Kezer
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.10.2013
Mitteilungen: 345
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.16, vom Themenstarter, eingetragen 2019-08-27 17:37


Danke, alles sehr schöne Antworten!


-----------------
The difference between the novice and the master is that the master has failed more times than the novice has tried. ~ Koro-Sensei



  Profil  Quote  Link auf diesen Beitrag Link
Kezer hat die Antworten auf ihre/seine Frage gesehen.
Kezer hat selbst das Ok-Häkchen gesetzt.
Neues Thema [Neues Thema]  Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2019 by Matroids Matheplanet
This web site was made with PHP-Nuke, a web portal system written in PHP. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]