Matroids Matheplanet Forum Index
Moderiert von matroid Buri
Matroids Matheplanet Forum Index » Mathematik » Beweis der Injektiviät
Druckversion
Druckversion
Autor
Universität/Hochschule J Beweis der Injektiviät
Math_user
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.05.2019
Mitteilungen: 374
Aus: Deutschland
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2019-10-22


Guten Abend zusammen

Ich versuche gerade zu zeigen, dass wenn der ggT(n,m)=1 ist, dann haben wir folgenden Isomorphismus: \(\mathbb{Z}/nm\mathbb{Z}\)  \(\cong\) \((\mathbb{Z}/m\mathbb{Z})\)\(\times\)\((\mathbb{Z}/n\mathbb{Z})\). Ich konnte erfolgreich zeigen, dass meine Abbildung: \(\phi[x]_{nm}=([x]_{m},[x]_{n})\) wohl definiert ist und auch ein Gruppenhomomorphismus ist. Nun habe ich aber eine Frage bei der Injektivität. Ich hatte folgenden Ansatz: Ist der Kern von \(\phi\) trivial, so ist  \(\phi\) injektiv. Sei also \(a\in ker(\phi)\), es muss gelten \(\phi[a]_{nm}=([a]_{m},[a]_{n})=([0]_{m},[0]_{n})\) damit dies der Fall ist muss m a teilen aber n muss auch a teilen und somit kann man doch schlussfolgern, dass n*m auch a teilen muss, oder? Somit folgt doch, dass \([a]_{nm}=[0]_{nm}\) und damit auch die Injektivität? Doch ich habe ja gar nicht denn ggT gebraucht... Ich zweifle deshalb ziemlich an meiner Lösung..

Vielen Dank für eure Zeit und Hilfe

Math_user



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Math_user
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.05.2019
Mitteilungen: 374
Aus: Deutschland
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, vom Themenstarter, eingetragen 2019-10-22


Ein weiterer Punkt, der mich zweifeln lässt, ist dass wir als Ansatz das Lemma von Bezout bekamen, ich aber nicht sehe, wo man diesen brauchen sollte.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Triceratops
Wenig Aktiv Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 28.04.2016
Mitteilungen: 4319
Aus: Berlin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, eingetragen 2019-10-22


Du hast verwendet:

$n \mid a ,~  m \mid a \implies n \cdot m \mid a.$
 
Genau dabei verwendet man die Teilerfremdheit von $n,m$. Beachte zum Beispiel, dass zwar $2 \mid 2$ und $2 \mid 2$, aber nicht $2 \cdot 2 \mid 2$.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Triceratops
Wenig Aktiv Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 28.04.2016
Mitteilungen: 4319
Aus: Berlin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2019-10-22


Das Lemma von Bézout kann man verwenden, um eine Umkehrabbildung hinzuschreiben.

Aber das braucht man hier nicht unbedingt. Wenn du einen injektiven Homomorphismus zwischen zwei Gruppen derselben Ordnung hast (hier: Ordnung $n \cdot m$), muss er bereits bijektiv und damit ein Isomorphismus sein.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 1245
Aus: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, eingetragen 2019-10-22

\(\begingroup\)\(\DeclareMathOperator{\mer}{mer} \DeclareMathOperator{\Sht}{Sht} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \newcommand{\h}{\o{h}} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Coker}{Coker} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \DeclareMathOperator{\End}{End} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\det}{det} \newcommand{\AA}{\sc{A}} \newcommand{\Rem}{\gudl{\sc{R}\!emark}} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}} \newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}} \newcommand{\O}{\c{O}} \DeclareMathOperator{\Ouv}{Ouv} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}} \newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\qst}{{}^{\color{red}{[?]}}} \newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\d}[1]{_{#1}} \newcommand{\nz}{\not=0} \newcommand{\x}{(x)} \newcommand{\y}{(y)} \newcommand{\r}[1]{\mid_{#1}} \newcommand{\ij}{(i,j)} \newcommand{\o}[1]{\operatorname{#1}} \newcommand{\ne}{\not=\emptyset} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\OC}{\c{O}_C} \newcommand{\OF}{\c{O}_F} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\ddd}{(d,d_1,d_2)} \newcommand{\Vd}{V_{d,d_1,d_2}} \newcommand{\xy}{(x,y)} \newcommand{\OX}{\c{O}_X} \newcommand{\Ox}{\c{O}_{X,x}} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}} \newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\DD}{\mathscr{D}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\c{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}} \newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}} \newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\sc{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\iso}{\overset{\sim}{\to}} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}{\Hom} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}} \newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}} \newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}} \newcommand{\Task}{\gudl{\sc{T}\!ask:}} \newcommand{\Exer}{\gudl{\sc{E}\!exercise:}} \newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}} \newcommand{\Goss}{\gudl{\sc{G}\!oss}} \newcommand{\CK}{C/K} \newcommand{\CS}{C/S} \newcommand{\Ck}{C/k} \newcommand{\Om}{\Omega} \newcommand{\J}{\Jac_{\CS}^{g-1}} \newcommand{\Fact}{\gudl{\sc{F}\!act\colon}} \newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}} \)
2019-10-22 23:50 - Math_user im Themenstart schreibt:
Guten Abend zusammen

Ich versuche gerade zu zeigen, dass wenn der ggT(n,m)=1 ist, dann haben wir folgenden Isomorphismus: \(\mathbb{Z}/nm\mathbb{Z}\)  \(\cong\) \((\mathbb{Z}/m\mathbb{Z})\)\(\times\)\((\mathbb{Z}/n\mathbb{Z})\). Ich konnte erfolgreich zeigen, dass meine Abbildung: \(\phi[x]_{nm}=([x]_{m},[x]_{m})\) wohl definiert ist und auch ein Gruppenhomomorphismus ist. Nun habe ich aber eine Frage bei der Injektivität. Ich hatte folgenden Ansatz: Ist der Kern von \(\phi\) trivial, so ist  \(\phi\) injektiv. Sei also \(a\in ker(\phi)\), es muss gelten \(\phi[a]_{nm}=([a]_{m},[a]_{m})=([0]_{m},[0]_{m})\) damit dies der Fall ist muss m a teilen aber n muss auch a teilen und somit kann man doch schlussfolgern, dass n*m auch a teilen muss, oder? Somit folgt doch, dass \([a]_{nm}=[0]_{nm}\) und damit auch die Injektivität? Doch ich habe ja gar nicht denn ggT gebraucht... Ich zweifle deshalb ziemlich an meiner Lösung..

Vielen Dank für eure Zeit und Hilfe

Math_user
Doch hast du.
Denn $n=m=2$ teilt zum Beispiel $2$, aber $nm=2\pt 2$ teilt $2$ nicht.
Außerdem sollte es $([x]_m,[x]_n)$ sein, nicht $([x]_m,[x]_m)$ ;-).

[Die Antwort wurde vor Beitrag No.1 begonnen.]


-----------------
”己所不欲,勿施于人“(Konfuzius)
PS: Falls ich plötzlich aufhöre in einem Thread zu antworten, dann kann es sein, dass ich es vergessen habe. Ihr könnt mir in diesem Fall eine Private Nachricht schicken.
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Math_user
Aktiv Letzter Besuch: in der letzten Woche
Dabei seit: 04.05.2019
Mitteilungen: 374
Aus: Deutschland
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, vom Themenstarter, eingetragen 2019-10-23


Upps, habe den Tippfehler gerade korrigiert :)

Vielen Dank für euere guten & schnellen Antworten!



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Math_user hat die Antworten auf ihre/seine Frage gesehen.
Math_user hat selbst das Ok-Häkchen gesetzt.
Neues Thema [Neues Thema]  Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]