Matroids Matheplanet Forum Index
Moderiert von Curufin epsilonkugel
Analysis » Grenzwerte » Grenzwert mittels der Definition zeigen
Druckversion
Druckversion
Antworten
Antworten
Autor
Universität/Hochschule Grenzwert mittels der Definition zeigen
flashstep
Junior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 13.11.2019
Mitteilungen: 6
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2019-11-13


fed-Code einblenden



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
PrinzessinEinhorn
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 23.01.2017
Mitteilungen: 2464
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2019-11-13


Hallo,

Es ist $2\leq 2n$ für $n\in\mathbb{N}$, wobei die Null hier nicht dazugehört. Das wäre aber auch nicht wichtig. Es ist nur wichtig, dass du eine derartige Abschätzung findest, die ab einem $n$ für alle weiteren gilt.

So kannst du weiter abschätzen, und vereinfachen.

Ansonsten zitierst du die Definition falsch, und gehst auch nicht ganz korrekt vor.

Für jedes $\varepsilon$ musst du ein $N\in\mathbb{N}$ finden, so dass für alle $n\geq N$ gilt, dass ...

Du musst also dieses $N$ finden. Dieses darf von $\varepsilon$ abhängen.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 4266
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, eingetragen 2019-11-13

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}}\)
Hallo flashstep und herzlich Willkommen auf dem Matheplaneten!


Deine Abschätzung ist von vorn herein falsch, denn du machst den Nenner größer anstatt kleiner.

Tipp: eine solche Abschätzung muss ja nicht unbedingt schon ab \(n=1\) gelten. Also könntest du doch die \(-6\) durch eine möglichst geschickte Potenz von \(n\) ersetzen, so dass dann ab einem gewissen n der Nenner tatsächlich kleiner wird.

Um den Zähler zu vergrößern, nutze den Hinweis von PrinzessinEinhorn.

Schlussendlich geht es darum, die Ungleichung nach \(n\) aufzulösen. Wenn das in der Form \(n>f(\varepsilon)\) gelingt, dann hast du die Existenz deines \(N(\varepsilon)\) gezeigt.


Gruß, Diophant
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
xiao_shi_tou_
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 12.08.2014
Mitteilungen: 1248
Aus: Bonn
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2019-11-13

\(\begingroup\)\(\DeclareMathOperator{\mer}{mer} \DeclareMathOperator{\Sht}{Sht} \DeclareMathOperator{\Ann}{Ann} \DeclareMathOperator{\Et}{\acute{E}t} \DeclareMathOperator{\et}{\acute{e}t} \DeclareMathOperator{\etaleness}{\acute{e}taleness} \newcommand{\h}{\o{h}} \newcommand{\unr}[1]{#1^{\o{un}}} \DeclareMathOperator{\H}{H} \DeclareMathOperator{\ind}{ind} \DeclareMathOperator{\etale}{\acute{e}tale} \DeclareMathOperator{\Coker}{Coker} \DeclareMathOperator{\Div}{Div} \DeclareMathOperator{\Gl}{GL} \DeclareMathOperator{\PGL}{PGL} \DeclareMathOperator{\dom}{dom} \DeclareMathOperator{\PSL}{PSL} \DeclareMathOperator{\SL}{SL} \DeclareMathOperator{\Res}{Res} \DeclareMathOperator{\equi}{equi} \DeclareMathOperator{\Hecke}{Hecke} \DeclareMathOperator{\Aut}{Aut} \DeclareMathOperator{\Jac}{Jac} \DeclareMathOperator{\GL}{GL} \DeclareMathOperator{\HF}{HF} \DeclareMathOperator{\HS}{HS} \DeclareMathOperator{\Ker}{Ker} \DeclareMathOperator{\trdeg}{trdeg} \DeclareMathOperator{\mod}{mod} \DeclareMathOperator{\codim}{codim} \DeclareMathOperator{\log}{log} \DeclareMathOperator{\Log}{Log} \DeclareMathOperator{\Nm}{Nm} \DeclareMathOperator{\Con}{Con} \DeclareMathOperator{\coker}{coker} \DeclareMathOperator{\Ob}{Ob} \DeclareMathOperator{\Emb}{Emb} \DeclareMathOperator{\Tr}{Tr} \DeclareMathOperator{\Sym}{Sym} \DeclareMathOperator{\scale}{scale} \DeclareMathOperator{\Sper}{Sper} \DeclareMathOperator{\Sp}{Sp} \DeclareMathOperator{\vol}{vol} \DeclareMathOperator{\Cl}{Cl} \DeclareMathOperator{\Ét}{Ét} \DeclareMathOperator{\Zar}{Zar} \DeclareMathOperator{\lcm}{lcm} \DeclareMathOperator{\ord}{ord} \newcommand{\End}{\mathop{\mathrm{End}}\nolimits} \newcommand{\cEnd}{\mathop{\mathcal{E}\!\mathit{nd}}\nolimits} \DeclareMathOperator{\supp}{supp} \DeclareMathOperator{\rad}{rad} \DeclareMathOperator{\lim}{lim} \DeclareMathOperator{\char}{char} \DeclareMathOperator{\Proj}{Proj} \DeclareMathOperator{\proj}{proj} \DeclareMathOperator{\length}{length} \DeclareMathOperator{\locArt}{locArt} \DeclareMathOperator{\Ass}{Ass} \DeclareMathOperator{\id}{id} \DeclareMathOperator{\im}{im} \DeclareMathOperator{\Pic}{Pic} \DeclareMathOperator{\Spec}{Spec} \DeclareMathOperator{\Gal}{Gal} \DeclareMathOperator{\Hom}{Hom} \DeclareMathOperator{\ker}{ker} \DeclareMathOperator{\ht}{ht} \DeclareMathOperator{\Frob}{Frob} \DeclareMathOperator{\Frac}{Frac} \DeclareMathOperator{\det}{det} \newcommand{\AA}{\sc{A}} \newcommand{\Rem}{\gudl{\sc{R}\!emark}} \newcommand{\Def}{\color{orange}{\underline{\color{black}{\sc{D}\!efinition}}}} \newcommand{\Defn}[1]{\color{orange}{\underline{\color{black}{\sc{D}\!efinition\tx{}#1}}}} \newcommand{\Prop}{\color{orange}{\underline{\color{black}{\sc{P}\!roposition}}}} \newcommand{\Propn}[1]{\color{orange}{\underline{\color{black}{\sc{P}\!roposition\tx{}#1}}}} \newcommand{\Claim}{\gudl{\sc{C}\!laim\colon}} \newcommand{\Claimn}[1]{\gudl{\sc{C}\!laim \tx{}#1}} \newcommand{\Thm}{\color{orange}{\underline{\color{black}{\sc{T}\!heorem}}}} \newcommand{\Thmn}[1]{\gudl{\sc{T}\!heorem\tx{}#1}} \newcommand{\O}{\c{O}} \DeclareMathOperator{\Ouv}{Ouv} \newcommand{\Cor}{\color{orange}{\underline{\color{black}{\sc{C}\!orollary}}}} \newcommand{\Corn}[1]{\color{orange}{\underline{\color{black}{\sc{C}\!orollary\tx{}#1}}}} \newcommand{\Fct}{\color{orange}{\underline{\color{black}{\sc{F}\!act}}}} \newcommand{\Fctn}[1]{\color{orange}{\underline{\color{black}{\sc{F}\!act\tx{}#1}}}} \newcommand{\Lem}{\color{orange}{\underline{\color{black}{\sc{L}\!emma}}}} \newcommand{\Lemn}[1]{\color{orange}{\underline{\color{black}{\sc{L}\!emma\tx{}#1}}}} \newcommand{\Exp}{\color{orange}{\underline{\color{black}{\sc{E}\!xample}}}} \newcommand{\Expn}[1]{\color{orange}{\underline{\color{black}{\sc{E}\!xample\tx{}#1}}}} \newcommand{\Rem}{\gudl{\sc{R}\!emark\colon}} \newcommand{\Remn}[1]{\gudl{\sc{R}\!emark #1\colon}} \newcommand{\brc}[1]{[\![#1]\!]} \newcommand{\qst}{{}^{\color{red}{[?]}}} \newcommand{\qstn}[1]{{}^{\color{red}{[?,#1]}}} \newcommand{\sto}{\overset{\sim}{\to}} \newcommand{\srj}{\twoheadrightarrow} \newcommand{\Ga}{\mathbb{G}_a} \newcommand{\G}{\mathbb{G}} \newcommand{\B}{\mathbb{B}} \newcommand{\Gm}{\G_m} \newcommand{\d}[1]{_{#1}} \newcommand{\nz}{\not=0} \newcommand{\x}{(x)} \newcommand{\y}{(y)} \newcommand{\r}[1]{\mid_{#1}} \newcommand{\ij}{(i,j)} \newcommand{\o}[1]{\operatorname{#1}} \newcommand{\ne}{\not=\emptyset} \newcommand{\ISLn}{\mathbb{S}\mathbb{L}_n} \newcommand{\tfae}{\textbf{T.F.A.E.}} \newcommand{\ndownlong}[2]{#1\ -\!\!\!\rightharpoonup\!\leftharpoondown\!\to\! #2} \newcommand{\OC}{\c{O}_C} \newcommand{\OF}{\c{O}_F} \newcommand{\gsp}[1]{\udl{\Spec}_S(#1)} \newcommand{\shso}{\udl{\text{Sheaves on}}} \newcommand{\shs}{\udl{\text{Sheaves}}} \newcommand{\ush}[1]{\udl{\text{Sheaf}}(#1)} \newcommand{\sh}{\udl{\text{Sheaf}}} \newcommand{\rr}{/\!\!/} \newcommand{\EE}{\mathscr{E}} \newcommand{\V}{\mathbb{V}} \newcommand{\ddd}{(d,d_1,d_2)} \newcommand{\Vd}{V_{d,d_1,d_2}} \newcommand{\xy}{(x,y)} \newcommand{\OX}{\c{O}_X} \newcommand{\Ox}{\c{O}_{X,x}} \newcommand{\KK}{\mathbb{K}} \newcommand{\lims}{\limsup_{n\to \infty}} \newcommand{\proof}{\gudl{\mathscr{P}\!roof}\colon} \newcommand{\proofofprop}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{P}\!roposition\tx{}#1}\colon}} \newcommand{\proofofcor}[1]{\underline{\color{orange}{\mathscr{P}\!roof\tx{}of\tx{}\sc{C}\!orollary\tx{}#1}\colon}} \newcommand{\proofofthm}{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\colon}} \newcommand{\proofofthmn}[1]{\gudl{\sc{P}\!roof\tx{}of\tx{}\sc{T}\!heorem\tx{}#1\colon}} \newcommand{\Bew}{\underline{\color{orange}{\mathscr{B}\!eweis}\colon}} \newcommand{\defeq}{\overset{\mathscr{D}\mathscr{e}\mathscr{f}.}{=\!=}} \newcommand{\set}[2]{\{#1\mid #2\}} \newcommand{\SS}{\mathscr{S}} \newcommand{\FF}{\mathscr{F}} \newcommand{\dyadksum}[1]{\sum_{I\in \DD_k,I\sube J}#1} \newcommand{\noem}{\not=\emptyset} \newcommand{\DD}{\sc{D}} \newcommand{\BB}{\mathscr{B}} \newcommand{\KK}{\sc{K}} \newcommand{\Pr}{\ff{P}} \newcommand{\exact}[3]{0\to #1\to #2\to#3\to 0} \newcommand{\qed}{\gudl{\ff{Q}.\ff{E}.\ff{D}.}} \newcommand{\wt}[1]{\widetilde{#1}} \newcommand{\wh}[1]{\widehat{#1}} \newcommand{\spr}[1]{\Sper(#1)} \newcommand{\LL}{\mathscr{L}} \newcommand{\sp}[1]{\Spec(#1)} \newcommand{\nuplong}[2]{#1\ -\!\!\!\rightharpoondown\!\leftharpoonup\!\to\! #2} \newcommand{\ndownloong}[2]{#1 -\!\!\!-\!\!\!\rightharpoonup\!\leftharpoondown\!\!\!\longrightarrow \!#2} \newcommand{\bop}{\bigoplus} \newcommand{\eps}{\epsilon} \newcommand{\K}{\mathbb{K}} \newcommand{\lxen}{\langle x_1\cos x_n\rangle} \newcommand{\Xen}{[X_1\cos X_n]} \newcommand{\xen}{[x_1\cos x_n]} \newcommand{\ip}{\langle -,- \rangle} \newcommand{\ipr}[2]{\langle #1,#2 \rangle} \newcommand{\vth}{\vartheta} \newcommand{\pprod}{\prod_{v\in\ff{M}_\K}} \newcommand{\pfam}[1]{(#1)_{v\in\ff{M}_\K}} \newcommand{\pl}[1]{\ff{S}(#1)} \newcommand{\plf}[1]{\ff{S}_{\o{fin}}(#1)} \newcommand{\pli}[1]{\ff{S}_{\infty}(#1)} \newcommand{\finfam}[1]{(#1)_{i=1}^n} \newcommand{\fam}[1]{(#1)_{i\in I}} \newcommand{\jfam}[1]{(#1)_{j\in J}} \newcommand{\kfam}[1]{(#1)_{k\in K}} \newcommand{\nfam}[1]{(#1)_{i=1}^n} \newcommand{\nifam}[1]{(#1)_{n=0}^\infty} \newcommand{\udl}[1]{\underline{#1}} \newcommand{\Uij}{U_i\cap U_j} \newcommand{\vpi}{\varphi_i} \newcommand{\vpj}{\varphi_j} \newcommand{\vph}{\varphi} \newcommand{\psij}{\psi_{i,j}} \newcommand{\CC}{\c{C}} \newcommand{\nsum}{\sum_{n\in\N}} \newcommand{\twist}[1]{\c{O}_{\mathbb{P}_k^n}(#1)} \newcommand{\prj}[1]{\Proj (#1)} \newcommand{\part}[2]{\frac{\partial #1}{\partial #2}} \newcommand{\kxn}{k[x_0,\pts,x_n]} \newcommand{\ques}{\gudl{\c{Q}\!uestion\colon}} \newcommand{\quesn}[1]{\gudl{\c{Q}\!uestion\tx{}#1\colon}} \newcommand{\answ}{\gudl{\sc{A}\!nswer\colon}} \newcommand{\cons}{\color{orange}{\udl{\color{black}{\sc{C}\!onsiderations:}}}} \newcommand{\ka}{\kappa} \newcommand{\pr}{\mathfrak{p}} \newcommand{\abs}[1]{\left| #1\right|} \newcommand{\ab}{\left|-\right|} \newcommand{\eps}{\epsilon} \newcommand{\N}{\mathbb{N}} \newcommand{\KX}{K[X]} \newcommand{\cov}{\c{U}} \newcommand{\ff}[1]{\mathfrak{#1}} \newcommand{\legendre}[2]{\left(\frac{#1}{#2}\right)} \newcommand{\half}{\frac{1}{2}} \newcommand{\ANF}{K/\Q} \newcommand{\GFF}{F/{\F_p(t)}} \newcommand{\Os}{\mathcal{O}_{S,s}} \newcommand{\lineb}{\sc{L}} \newcommand{\cyclm}{\Q(\sqrt[m]{1})} \newcommand{\cyclmK}{K(\sqrt[m]{1})} \newcommand{\LX}{L[X]} \newcommand{\GG}{\sc{G}} \newcommand{\OS}{\mathcal{O}_S} \newcommand{\OK}{\c{O}_K} \newcommand{\OF}{\c{O}_F} \newcommand{\OL}{\c{O}_L} \newcommand{\Ok}{\c{O}_k} \newcommand{\OZ}{\c{O}_Z} \newcommand{\O}{\c{O}} \newcommand{\bb}[1]{\textbf{#1}} \newcommand{\OY}{\mathcal{O}_Y} \newcommand{\vdp}{\sc{V}\!an\text{ }der\text{ }\sc{P}\!ut} \newcommand{\weierstrass}{\sc{W}\!eierstraß} \newcommand{\runge}{\sc{R}\!unge} \newcommand{\laurent}{\sc{L}\!aurent} \newcommand{\grothendieck}{\sc{G}\!rothendieck} \newcommand{\noether}{\sc{N}\!oether} \newcommand{\glX}{\Gamma(X,\mathcal{O}_X)} \newcommand{\glY}{\Gamma(Y,\mathcal{O}_Y)} \newcommand{\finKX}{f\in K[X]} \newcommand{\ser}[1]{\sm{n=0}{\infty}{#1}} \newcommand{\sm}[3]{\underset{#1}{\overset{#2}{\sum}} #3} \newcommand{\cl}[1]{\overline{#1}} \newcommand{\sube}{\subseteq} \newcommand{\hk}{\hookrightarrow} \newcommand{\OYy}{\mathcal{O}_{Y,y}} \newcommand{\supe}{\supseteq} \newcommand{\resy}{\kappa(y)} \newcommand{\LK}{L/K} \newcommand{\isom}[3]{#1\overset{#2}{\iso}#3} \newcommand{\kn}{k^n} \newcommand{\kvec}{\textbf{vect}(k)} \newcommand{\fkvec}{\textbf{vect}_{<\infty}(k)} \newcommand{\fz}{f(X)=0} \newcommand{\KIsom}{L\underset{K}{\overset{\sim}{\to}} L} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\L}{\mathbb{L}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\A}{\mathbb{A}} \newcommand{\ad}{\A_k} \newcommand{\qgal}[1]{\Gal(#1/\Q)} \newcommand{\P}{\mathbb{P}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Zp}{\mathbb{Z}_p} \newcommand{\Qp}{\mathbb{Q}_p} \newcommand{\Qq}{\mathbb{Q}_q} \newcommand{\Fp}{\mathbb{F}_p} \newcommand{\I}{[0,1]} \newcommand{\In}{[0,1]^n} \newcommand{\Fpn}{\mathbb{F}_{p^n}} \newcommand{\Fpm}{\mathbb{F}_{p^m}} \newcommand{\Zn}{\mathbb{Z}/{n\mathbb{Z}}} \newcommand{\Zx}[1]{\mathbb{Z}/{#1\mathbb{Z}}} \newcommand{\md}[3]{#1\equiv #2\pmod{#3}} \newcommand{\ga}{\Gal(L/K)} \newcommand{\aga}[1]{\Gal(\overline{#1}/#1)} \newcommand{\sga}[1]{\Gal(#1^{sep}/{#1})} \newcommand{\gal}[2]{\Gal(#1/{#2})} \newcommand{\c}[1]{\mathcal{#1}} \newcommand{\skw}{\{\tau\}} \newcommand{\limes}[1]{\underset{i\in I}{\varprojlim{#1_i}}} \newcommand{\IGLn}{\mathbb{G}\mathbb{L}_n} \newcommand{\IGL}{\mathbb{G}\mathbb{L}} \newcommand{\Co}[2]{H^p(#1,#2)} \newcommand{\OK}{\mathcal{O}_K} \newcommand{\OL}{\mathcal{O}_L} \newcommand{\res}[1]{\kappa(#1)} \newcommand{\resx}{\kappa(x)} \newcommand{\lTen}{\langle T_1\cos T_n\rangle} \newcommand{\lXen}{\langle X_1\cos X_n\rangle} \newcommand{\Te}{[T]} \newcommand{\Tee}{[T_1,T_2]} \newcommand{\Teee}{[T_1,T_2,T_3]} \newcommand{\Ten}{[T_1\cos T_n]} \newcommand{\Tem}{[T_1\cos T_m]} \newcommand{\pts}{\cdots} \newcommand{\pt}{\cdot} \newcommand{\hm}[3]{\Hom_{#1}(#2,#3)} \newcommand{\hom}{\Hom} \newcommand{\dash}{\dashrightarrow} \newcommand{\schemes}{\bb{(Sch)}} \newcommand{\groups}{\bb{(Grp)}} \newcommand{\rings}{\bb{(Ring)}} \newcommand{\tx}[1]{\text{ #1 }} \newcommand{\mm}{\ff{m}} \newcommand{\zkinfsum}{\sum_{k=0}^\infty} \newcommand{\ziinfsum}{\sum_{i=0}^\infty} \newcommand{\zjinfsum}{\sum_{j=0}^\infty} \newcommand{\asum}[1]{\sum_{\a\in\N^n}#1 X^\a} \newcommand{\arr}[3]{#1\overset{#2}{\to} #3} \newcommand{\nrm}[1]{\left\|#1\right\|} \newcommand{\nr}{\nrm{-}} \newcommand{\ext}[2]{#1/{#2}} \newcommand{\lam}{\lambda} \newcommand{\a}{\alpha} \newcommand{\be}{\beta} \newcommand{\g}{\gamma} \newcommand{\de}{\delta} \newcommand{\vp}{\varphi} \newcommand{\p}{\phi} \newcommand{\bul}{\bullet} \newcommand{\t}{\tau} \newcommand{\s}{\sigma} \newcommand{\ze}{\zeta} \newcommand{\T}{\mathbb{T}} \newcommand{\tm}{\times} \newcommand{\tms}{\times\pts\times} \newcommand{\ot}{\otimes} \newcommand{\ots}{\otimes\pts\otimes} \newcommand{\pls}{+\pts +} \newcommand{\cos}{,\pts,} \newcommand{\op}{\oplus} \newcommand{\ops}{\oplus\pts\oplus} \newcommand{\cr}{\circ} \newcommand{\crs}{\circ\pts\circ} \newcommand{\sc}[1]{\mathscr{#1}} \newcommand{\scal}[2]{\sc{#1}{\!#2}} \newcommand{\ov}[2]{\begin{matrix}#1 \\ #2\end{matrix}} \newcommand{\viele}{\color{orange}{\udl{\color{black}{\sc{V}\!iele\tx{}\sc{G}\!r\overset{{}_{,,\!}}{u}\textit{ß}e}}}} \newcommand{\xst}{\color{orange}{\udl{\color{black}{X.S.T.\sim 小石头}}}} \newcommand{\gudl}[1]{\color{orange}{\udl{\color{black}{#1}}}} \newcommand{\Task}{\gudl{\sc{T}\!ask:}} \newcommand{\Exer}{\gudl{\sc{E}\!exercise:}} \newcommand{\Drinfeld}{\gudl{\sc{D}\!rinfeld:}} \newcommand{\Goss}{\gudl{\sc{G}\!oss}} \newcommand{\CK}{C/K} \newcommand{\CS}{C/S} \newcommand{\Ck}{C/k} \newcommand{\Om}{\Omega} \newcommand{\J}{\Jac_{\CS}^{g-1}} \newcommand{\Fact}{\gudl{\sc{F}\!act\colon}} \newcommand{\Factn}[1]{\gudl{\sc{F}\!act\tx{}#1\colon}} \newcommand{\sep}[1]{#1^{\o{sep}}} \newcommand{\abel}[1]{#1^{\o{ab}}} \newcommand{\corres}[2]{\{#1\}\leftrightarrows\{#2\}} \newcommand{\units}[1]{#1^{\tm}} \newcommand{\line}{\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!\sim\!\!} \newcommand{\fin}[1]{#1^{\o{fin}}} \newcommand{\infin}[1]{#1^{\infty}} \newcommand{\Ql}{\Q_{\ell}} \newcommand{\dbquot}[3]{{}_{#2}\backslash#1/_{#3}} \)
Hi flashstep.
Die Vorgehensweise "Sei $\eps>0$. Dann gilt $\abs{a_n-a}<\eps$. und jetzt kommt der Rest des Beweises "
ist grundsätzlich falsch. Hättest du die Ungleichung $\abs{a_n-a}<\eps$ für $n\ggg 0$ bewiesen, dann wärst du schon fertig.

Ziel ist es, gerade diese Ungleichung für $n\ggg 0$ zu zeigen.
Die Schreibweise $n\ggg 0$ bedeutet: "Für $n$ groß genug gilt ..." und das bedeutet "Es gibt ein $n_0$, sodass für alle $n$ größer $n_0$ gilt...".

Ist dir der Beweis klar, der mit Rechenregeln für Limiten geführt wird?
Ich meine, obwohl es nicht schwer ist, aber warum den Beweis direkt über die Definition führen, wenn es auch einfacher geht?

Viele Grüße
XST


-----------------
”己所不欲,勿施于人“(Konfuzius)
PS: Falls ich plötzlich aufhöre in einem Thread zu antworten, dann kann es sein, dass ich es vergessen habe. Ihr könnt mir in diesem Fall eine Private Nachricht schicken.
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
flashstep
Junior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 13.11.2019
Mitteilungen: 6
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, vom Themenstarter, eingetragen 2019-11-13


Danke für die Antworten. Habe meine Argumentation nochmal nachgebessert..

2019-11-13 14:22 - xiao_shi_tou_ in Beitrag No. 3 schreibt:
Ich meine, obwohl es nicht schwer ist, aber warum den Beweis direkt über die Definition führen, wenn es auch einfacher geht?

Natürlich, damit wäre das vermutlich ein Zwei-Zeiler. Unser Prof. wollte es und jedoch mit Absicht schwerer machen.

Irgendwie sehe ich die geeignete Abschätzung nicht. Gefühlt blind auf beiden Augen.

[Die Antwort wurde nach Beitrag No.2 begonnen.]



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 4266
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, eingetragen 2019-11-13

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}}\)
Hallo,

2019-11-13 14:28 - flashstep in Beitrag No. 4 schreibt:
Danke für die Antworten. Habe meine Argumentation nochmal nachgebessert..

Nach wie vor wird dein Nenner größer, anstatt kleiner. So wird es also nicht funktionieren.

Dazu wurden doch in den Beiträgen #1 und #2 schon die notwendigen Tipps gegeben.  😄

Und der von xiao_shi_tou_ zurecht monierte Satz:

Sei \(\varepsilon>0\), so gilt: ...

steht auch noch da. Das kann man ja nicht vorwegnehmen, das musst du doch erst noch zeigen, dass das gilt.

Für deine nächste Rückfrage: sei so gut und poste das, was du geändert hast bzw. dir überlegt hast in der Rückfrage mit.


Gruß, Diophant
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
ochen
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 09.03.2015
Mitteilungen: 2863
Aus: der Nähe von Schwerin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.6, eingetragen 2019-11-13


Um ehrlich zu sein, finde ich es auch ganz gut, so etwas mit der Definition durch zu rechnen.
PrinzessinEinhorn hat ja schon geschrieben, was du machen koenntest
\[\left| \frac{2n+2}{3n^3-2}\right|\leq \left| \frac{2n+2n}{3n^3-2}\right|\]
[Die Antwort wurde nach Beitrag No.4 begonnen.]



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
flashstep
Junior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 13.11.2019
Mitteilungen: 6
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.7, vom Themenstarter, eingetragen 2019-11-13


Habe nochmal den Startpost überarbeitet. Passt das so besser?



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
ochen
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 09.03.2015
Mitteilungen: 2863
Aus: der Nähe von Schwerin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.8, eingetragen 2019-11-13


Rechne doch mal mit dem Hinweis von Prinzessin Einhorn weiter. Für $n\geq 1$ gilt
\[\left| \frac{n^3+2n}{3n^3-6}-\frac{1}{3}\right|= \left| \frac{2n+2}{3n^3-6}\right|\leq \left| \frac{2n+2n}{3n^3-6}\right|=\left| \frac{4n}{3n^3-6}\right|\] Wie kannst du den Nenner verkleinern, damit du im nächsten Schritt $n$ aus dem Nenner ausklammern kannst?



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 4266
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.9, eingetragen 2019-11-13

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}}\)
Hallo,

2019-11-13 14:45 - flashstep in Beitrag No. 7 schreibt:
Habe nochmal den Startpost überarbeitet. Passt das so besser?

nochmals: das ist eine äußerst ungünstige Vorgehensweise. Poste bitte jede Version mit einer erneuten Rückfrage.

Also, die Sache mit dem Zähler ist ja geklärt. Dann will ich mal meinen Tipp für den Nenner noch etwas präzisieren:

Es ist \(n^3>6\quad\forall n\ge 2\). Umgekehrt gilt dann aber auch \(-n^3<-6\quad\forall n\ge 2\).
Und was solltest du gleich mit dem Nenner nochmal machen?  😉

PS: durch den ganzen Thread zieht sich der falsche Nenner \(3n^3-2\) durch. Den hast du ja schon ins Spiel gebracht. Es heißt aber \(3n^3-6\). Und am Nenner kann sich hier bei der Subtraktion der \(1/3\) sowieso nichts ändern, da \(3\mid 3n^3-6\) gilt...


Gruß, Diophant
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
flashstep
Junior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 13.11.2019
Mitteilungen: 6
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.10, vom Themenstarter, eingetragen 2019-11-13


Habe dich da falsch verstanden. Mir ist der Fehler mit der -6 im Nenner tatsächlich überhaupt nicht aufgefallen - peinlich.

Also ich merke, dass ich arge Schwierigkeiten bei der Methodik des Abschätzens habe (vermutlich, weil ich diese noch nie wirklich kennengelernt habe). Könntest du mir dazu evtl. Tipps geben? Denn ich persönlich sehe überhaupt nicht, was es bringt zu wissen, dass fed-Code einblenden .
Daher schätze ich das Problem liegt etwas weiter vorne.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 4266
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.11, eingetragen 2019-11-13

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}}\)
Hallo,

ein Bruch wird größer, wenn man den Nenner verkleinert. \(-n^3\) ist kleiner als \(-6\) für alle \(n\ge 2\). Du möchtest den Nenner verkleinern.

Jetzt kombiniere das mal miteinander...


Gruß, Diophant
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
flashstep
Junior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 13.11.2019
Mitteilungen: 6
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.12, vom Themenstarter, eingetragen 2019-11-13


Also..
fed-Code einblenden



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 4266
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.13, eingetragen 2019-11-13

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}}\)
Hallo,

bis auf einen Tippfehler jetzt passt es. So könnte es nun für \(n\ge 2\) aussehen:

\[\left|\frac{2n+2}{3n^3-6}\right|\le\frac{4n}{3n^3-6}<\frac{4n}{2n^3}=\frac{2}{n^2}<\varepsilon\]
(Achte darauf, ab wo du die Betragsklammern weglassen kannst)

Aufgelöst hast du dann wiederum korrekt, ich würde es andersherum schreiben:

\[n>\sqrt{\frac{2}{\varepsilon}}\]
Somit ist gezeigt, dass für jedes \(\varepsilon>0\) ein \(N(\varepsilon)\) existiert, ab dem die Ungleichung \(|a_n-a|<\varepsilon\)  gilt, ab dem also alle Folgenglieder in der betreffenden Epsilon-Umgebung liegen. Und damit ist nach Definition die Konvergenz der Folge gegen den Grenzwert \(a=\frac{1}{3}\) gezeigt.


Gruß, Diophant
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
flashstep
Junior Letzter Besuch: vor mehr als 3 Monaten
Dabei seit: 13.11.2019
Mitteilungen: 6
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.14, vom Themenstarter, eingetragen 2019-11-13


Ich danke für die ewige Geduld. Der Betrag kann weggelassen werden, da n Element der natürlichen Zahlen ist und daher nur positiv sein kann. Daraus folgt für die Definition des Betrages, dass man einfach die Betragsstriche weglassen darf.



Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
Diophant
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 18.01.2019
Mitteilungen: 4266
Aus: Rosenfeld, BW
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.15, eingetragen 2019-11-13

\(\begingroup\)\(\newcommand{\ba}{\begin{aligned}} \newcommand{\ea}{\end{aligned}} \newcommand{\bpm}{\begin{pmatrix}} \newcommand{\epm}{\end{pmatrix}} \newcommand{\bc}{\begin{cases}} \newcommand{\ec}{\end{cases}} \newcommand{\on}{\operatorname} \newcommand{\ds}{\displaystyle}\)
Hallo nochmals,

2019-11-13 18:34 - flashstep in Beitrag No. 14 schreibt:
Ich danke für die ewige Geduld.

Kein Thema.  😄

2019-11-13 18:34 - flashstep in Beitrag No. 14 schreibt:
Der Betrag kann weggelassen werden, da n Element der natürlichen Zahlen ist und daher nur positiv sein kann. Daraus folgt für die Definition des Betrages, dass man einfach die Betragsstriche weglassen darf.

Ganz so einfach ist es nicht. Im obigen Fall geht es, wenn du bereits zu Beginn \(n\ge 2\) festlegst. Aber generell muss man da immer aufpassen, dass man nicht etwa einen negativen Term in der Betragsklammer stehen hat.


Gruß, Diophant
\(\endgroup\)


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil  Quote  Link auf diesen Beitrag Link
flashstep hat die Antworten auf ihre/seine Frage gesehen.
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]