Die Mathe-Redaktion - 09.04.2020 09:07 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte / Top 15
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
Listenpunkt? im neuen Schwätz
ListenpunktWerde Mathe-Millionär!
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps für den MP

Werbung

Bücher zu Naturwissenschaft und Technik bei amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 477 Gäste und 19 Mitglieder online

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von Curufin epsilonkugel
Differentiation » Differentialrechnung in IR » Ableitung - Differentialgleichung
Druckversion
Druckversion
Autor
Universität/Hochschule J Ableitung - Differentialgleichung
mast
Junior Letzter Besuch: im letzten Quartal
Dabei seit: 02.11.2019
Mitteilungen: 20
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2020-01-20


Hey,


Wir haben eine Aufgabe zu erledigen bekommen, allerdings kann ich mit der echt nicht viel anfangen (denn Differentialgleichungen (zumindest dieses Wort) kamen auch nie in der Vorlesung vor). Ich hab auch versucht mich schlau zu machen. Das einzige Ergebnis auf das ich gekommen bin ist, dass es wahrscheinlich so aussehen müsste?:
y''(t)=f(t,y(t),y'(t))
y'''(t)=f(t,y(t),y'(t),y''(t))
Aber das kann ja nicht alles gewesen sein, oder?

LG



  Profil  Quote  Link auf diesen Beitrag Link
Vercassivelaunos
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 28.02.2019
Mitteilungen: 818
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.1, eingetragen 2020-01-20

\(\begingroup\)\(\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\K}{\mathbb{K}} \newcommand{\D}{\mathrm{D}} \newcommand{\d}{\mathrm{d}} \newcommand{\i}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\span}{\operatorname{span}} \newcommand{\im}{\operatorname{im}} \newcommand{\matrix}[1]{\left(\begin{matrix}#1\end{matrix}\right)} \newcommand{\vector}[1]{\left(\begin{array}{c}#1\end{array}\right)} \newcommand{\align}[1]{\begin{align*}#1\end{align*}} \newcommand{\ket}[1]{\left\vert#1\right>} \newcommand{\bra}[1]{\left<#1\right\vert} \newcommand{\braket}[2]{\left<#1\middle\vert#2\right>} \newcommand{\braketop}[3]{\left<#1\middle\vert#2\middle\vert#3\right>} \newcommand{\mean}[1]{\left<#1\right>} \newcommand{\lvert}{\left\vert} \newcommand{\rvert}{\right\vert} \newcommand{\lVert}{\left\Vert} \newcommand{\rVert}{\right\Vert}\)
Hallo mast,

was genau eine Differentialgleichung ist, ist für diese Aufgabe ja unerheblich. Es ist einfach nur eine interessante Zusatzinfo, dass man die Gleichung $y'(t)=f(t,y(t))$ auch Differentialgleichung nennt.

Zur Aufgabe: Du hast ja damit eine Gleichung gegeben, die $y'$ festlegt. $y''$ ist die Ableitung von $y'$, und $y'$ ist gleich $f(t,y(t))$. Naheliegend wäre es also, $f(t,y(t))$ abzuleiten.

Viele Grüße
Vercassivelaunos
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
mast
Junior Letzter Besuch: im letzten Quartal
Dabei seit: 02.11.2019
Mitteilungen: 20
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.2, vom Themenstarter, eingetragen 2020-01-20


Hey!
Danke erstmal.

Könntest du mir vlt einen Hinweis geben, wie ich die Funktion ableiten kann? Ich versteh nicht ganz wie ich mit der Funkiton umgehen soll.

LG



  Profil  Quote  Link auf diesen Beitrag Link
Vercassivelaunos
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 28.02.2019
Mitteilungen: 818
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.3, eingetragen 2020-01-20

\(\begingroup\)\(\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\K}{\mathbb{K}} \newcommand{\D}{\mathrm{D}} \newcommand{\d}{\mathrm{d}} \newcommand{\i}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\span}{\operatorname{span}} \newcommand{\im}{\operatorname{im}} \newcommand{\matrix}[1]{\left(\begin{matrix}#1\end{matrix}\right)} \newcommand{\vector}[1]{\left(\begin{array}{c}#1\end{array}\right)} \newcommand{\align}[1]{\begin{align*}#1\end{align*}} \newcommand{\ket}[1]{\left\vert#1\right>} \newcommand{\bra}[1]{\left<#1\right\vert} \newcommand{\braket}[2]{\left<#1\middle\vert#2\right>} \newcommand{\braketop}[3]{\left<#1\middle\vert#2\middle\vert#3\right>} \newcommand{\mean}[1]{\left<#1\right>} \newcommand{\lvert}{\left\vert} \newcommand{\rvert}{\right\vert} \newcommand{\lVert}{\left\Vert} \newcommand{\rVert}{\right\Vert}\)
Kennst du schon die mehrdimensionale Kettenregel? Dann lässt sich die Funktion nämlich als Verkettung $f\circ g$ mit $g:\R\to\R^2$ und $f:\R^2\to\R$ schreiben und darauf die Kettenregel anwenden.
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
mast
Junior Letzter Besuch: im letzten Quartal
Dabei seit: 02.11.2019
Mitteilungen: 20
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.4, vom Themenstarter, eingetragen 2020-01-20


Jep, die kenne ich.
Ich hadere etwas mit der Funktionenwahl.
Kann es sein, dass du für f einfach die Funktion f aus der Angabe meinst und für g eine Funktion, die fed-Code einblenden abbildet?



  Profil  Quote  Link auf diesen Beitrag Link
Vercassivelaunos
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 28.02.2019
Mitteilungen: 818
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.5, eingetragen 2020-01-20


Ganz genau das meine ich ;)



  Profil  Quote  Link auf diesen Beitrag Link
mast
Junior Letzter Besuch: im letzten Quartal
Dabei seit: 02.11.2019
Mitteilungen: 20
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.6, vom Themenstarter, eingetragen 2020-01-20


Sorry, dass ich dich noch mehr stören muss, aber stimmt das so?:

fed-Code einblenden

Und wenn ja wie könnte ich das noch vervollständigen?



  Profil  Quote  Link auf diesen Beitrag Link
Vercassivelaunos
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 28.02.2019
Mitteilungen: 818
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.7, eingetragen 2020-01-21

\(\begingroup\)\(\newcommand{\N}{\mathbb{N}} \newcommand{\Z}{\mathbb{Z}} \newcommand{\Q}{\mathbb{Q}} \newcommand{\R}{\mathbb{R}} \newcommand{\C}{\mathbb{C}} \newcommand{\F}{\mathbb{F}} \newcommand{\K}{\mathbb{K}} \newcommand{\D}{\mathrm{D}} \newcommand{\d}{\mathrm{d}} \newcommand{\i}{\mathrm{i}} \newcommand{\e}{\mathrm{e}} \newcommand{\diag}{\operatorname{diag}} \newcommand{\span}{\operatorname{span}} \newcommand{\im}{\operatorname{im}} \newcommand{\matrix}[1]{\left(\begin{matrix}#1\end{matrix}\right)} \newcommand{\vector}[1]{\left(\begin{array}{c}#1\end{array}\right)} \newcommand{\align}[1]{\begin{align*}#1\end{align*}} \newcommand{\ket}[1]{\left\vert#1\right>} \newcommand{\bra}[1]{\left<#1\right\vert} \newcommand{\braket}[2]{\left<#1\middle\vert#2\right>} \newcommand{\braketop}[3]{\left<#1\middle\vert#2\middle\vert#3\right>} \newcommand{\mean}[1]{\left<#1\right>} \newcommand{\lvert}{\left\vert} \newcommand{\rvert}{\right\vert} \newcommand{\lVert}{\left\Vert} \newcommand{\rVert}{\right\Vert}\)
Wenn du $g$ ableitest, musst du auch beide Komponenten ableiten, nicht nur das $y$.
Davon abgesehen könnte man noch $f'\cdot (1,y')$ ausmultiplizieren. Zur Bestimmung von $y'''$ wäre das zumindest praktisch.
\(\endgroup\)


  Profil  Quote  Link auf diesen Beitrag Link
mast
Junior Letzter Besuch: im letzten Quartal
Dabei seit: 02.11.2019
Mitteilungen: 20
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.8, vom Themenstarter, eingetragen 2020-01-21


Also lautet mein y''=f'+f'*y'?
Und dadurch mein y'''= f''+f''*y'+y''*f'?
Oder mach ich da wieder was falsch?



  Profil  Quote  Link auf diesen Beitrag Link
ochen
Senior Letzter Besuch: in der letzten Woche
Dabei seit: 09.03.2015
Mitteilungen: 2708
Aus: der Nähe von Schwerin
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.9, eingetragen 2020-01-21


Hallo,

$f'$ ist ein Zeilenvektor mit zwei Komponenten, nenne diese vielleicht $f_t$ und $f_y$, denn die Komponenten sind gerade die partiellen Ableitungen von $f$. Weiter ist $y'=f$. Setze dies ein. Es gilt also
\[y''=(f_t,f_y)\cdot(1,y')^T=\ldots\]



  Profil  Quote  Link auf diesen Beitrag Link
mast
Junior Letzter Besuch: im letzten Quartal
Dabei seit: 02.11.2019
Mitteilungen: 20
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Beitrag No.10, vom Themenstarter, eingetragen 2020-01-21


Danke für die sehr bemühte Hilfe!
Ich habs jetzt endlich lösen können



  Profil  Quote  Link auf diesen Beitrag Link
mast hat die Antworten auf ihre/seine Frage gesehen.
mast hat selbst das Ok-Häkchen gesetzt.
Neues Thema [Neues Thema]  Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP, that seems no longer to be maintained or supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]