Die Mathe-Redaktion - 08.04.2020 18:34 - Registrieren/Login
Auswahl
ListenpunktHome
ListenpunktAktuell und Interessant ai
ListenpunktArtikelübersicht/-suche
ListenpunktAlle Links / Mathe-Links
ListenpunktFach- & Sachbücher
ListenpunktMitglieder / Karte / Top 15
ListenpunktRegistrieren/Login
ListenpunktArbeitsgruppen
Listenpunkt? im neuen Schwätz
ListenpunktWerde Mathe-Millionär!
ListenpunktFormeleditor fedgeo
Schwarzes Brett
Aktion im Forum
Suche
Stichwortsuche in Artikeln und Links von Matheplanet
Suchen im Forum
Suchtipps für den MP

Werbung

Bücher zu Naturwissenschaft und Technik bei amazon.de
Kontakt
Mail an Matroid
[Keine Übungsaufgaben!]
Impressum

Bitte beachten Sie unsere Nutzungsbedingungen, die Distanzierung, unsere Datenschutzerklärung und
die Forumregeln.

Sie können Mitglied werden. Mitglieder können den Matheplanet-Newsletter bestellen, der etwa alle 2 Monate erscheint.

Der Newsletter Okt. 2017

Für Mitglieder
Mathematisch für Anfänger
Wer ist Online
Aktuell sind 521 Gäste und 24 Mitglieder online

Sie können Mitglied werden:
Klick hier.

Über Matheplanet
 
Zum letzten Themenfilter: Themenfilter:
Matroids Matheplanet Forum Index
Moderiert von mire2 StrgAltEntf
Logik, Mengen & Beweistechnik » Prädikatenlogik » Prädikatenlogische Formel zeigen für alle Interpretationen
Druckversion
Druckversion
Antworten
Antworten
Autor
Universität/Hochschule Prädikatenlogische Formel zeigen für alle Interpretationen
Outtaspace
Junior Letzter Besuch: im letzten Quartal
Dabei seit: 13.02.2019
Mitteilungen: 8
Zum letzten BeitragZum nächsten BeitragZum vorigen BeitragZum erstem Beitrag  Themenstart: 2020-02-25


Aufgabe:

Seien A und B prädikatenlogische Formeln. Zeigen Sie dann für alle Interpretationen I:

$$ (I \vDash \neg B \ und \ I \vDash A\lor B ) \Rightarrow I\vDash A $$
Problem/Ansatz:

Hey hab bisher versucht das ganze mit der Definition von $$ \lor $$ oder mit der Def von $$ \rightarrow $$ und f.a. $$ \beta $$ aufzulösen

z.b. So:

$$ I \vDash \neg B \ und \ I \vDash A \lor B \Leftrightarrow \ (Def \ I \vDash) \ f.a. \beta \ I, \beta \vDash \neg B \ und \ f.a. \beta \ I, \beta \vDash A \lor B \Leftrightarrow (Def \ \rightarrow) \ f.a. \beta \ \ I ,\beta \vDash \neg B \ und \ f.a. \beta \ I, \beta \vDash \neg B \rightarrow A$$


oder so:

$$ I \vDash A \lor B \Rightarrow f.a.\ ß_1 I,ß_1\vDash A \ oder \ f.a. \ ß_2 \ I,ß_2\vDash B $$
Mir ist inzwischen schon klar geworden, dass mein Umstellen teilweise nur in eine Richtung zeigen darf und nicht immer $$ \Leftrightarrow$$ gilt, weil man aufpassen muss, weil die betas teilweise die Richtungen die Hin oder Rückrichtung kaputt machen, je nachdem. Hab dann teilweise versucht die beiden obigen Aussagen noch unterschiedlich weiter aufzulösen, aber war bisher alles eher erfolglos. Wäre froh, wenn mir jemand möglichst schnell auf die Lösung helfen könnte oder eventuell sogar einfach die Lösung zeigt, da ich übermogen bereits die Klausur dazu habe.



Liebe Grüße



  Profil  Quote  Link auf diesen Beitrag Link
Neues Thema [Neues Thema] Antworten [Antworten]    Druckversion [Druckversion]

 


Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2020 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP, that seems no longer to be maintained or supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]