|
Autor |
Beweis Menelaos |
|
Rurien9713
Aktiv  Dabei seit: 27.11.2020 Mitteilungen: 207
 |     Themenstart: 2021-02-23 18:13
|
Hallöchen zusammen!
Kann mir jemand bei folgender Frage helfen:
Eine Gerade g schneide die Verla ̈ngerungen der drei Seiten eines Dreieck ABC, nicht jedoch die Dreiecksseiten selbst. Formulieren und beweisen Sie den Satz von Menelaos fu ̈r diesen Fall. Machen Sie eine Skizze. Benutzen Sie Lote von den Eckpunkten des Dreiecks auf die Gerade g als Hilfslinien.
Ich denke, dass man hier die Strahlensätze nutzen sollte, doch weiß nicht, ob bspw. noch Hilfslinien nötig sind?
Würde mich über Hilfe freuen.
|
Notiz Profil
Quote
Link |
Rurien9713
Aktiv  Dabei seit: 27.11.2020 Mitteilungen: 207
 |     Beitrag No.1, vom Themenstarter, eingetragen 2021-02-23 18:26
|
Also ich habe es mithilfe der Strahlensätze gelöst.
Ich habe allerdings nicht die Lotpunkte dafür verwendet. Weiß jemand, ob man diese hier noch einbauen könnte?
|
Notiz Profil
Quote
Link |
Diophant
Senior  Dabei seit: 18.01.2019 Mitteilungen: 6090
Herkunft: Rosenfeld, BW
 |     Beitrag No.2, eingetragen 2021-02-23 18:33
|
Hallo,
es wäre hier wie bei deinen anderen Fragen ungemein hilfreich, wenn du deine 'Lösungen' nicht nur in Form von (missverständlichen) Texten posten würdest, sondern ausführliche Zeichnungen dazu präsentieren könntest.
Man muss es mal wieder loswerden: der Matheplanet ist kein Chatroom sondern ein ernsthaftes Fachforum. Dementsprechend sollte man sich die notwendige Zeit nehmen die es braucht, um mit der gebotenenen Gründlichkeit vorzugehen.
Gruß, Diophant
|
Notiz Profil
Quote
Link |
Rurien9713
Aktiv  Dabei seit: 27.11.2020 Mitteilungen: 207
 |     Beitrag No.3, vom Themenstarter, eingetragen 2021-02-23 18:42
|
Ich habe es gelöst, indem ich einmal Punkt A als Scheitel verwendet habe und dann den 1.Strahlensatz angewandt habe und einmal Punkt C als Scheitel für den Strahlensatz.
Daraufhin habe ich nur noch in meine Zielgleichung eingesetzt und somit 1 erhalten.
Danach habe ich die Rückrichtung gezeigt, indem ich gezeigt habe, dass Punkt M´identisch ist mit M und somit eindeutig.
Nun ich hoffe, dass ich meinen Lösungsvorgang ausführlich genug beschrieben habe :)
Meine Frage ist einfach nur, ob ich etwas ändern müsste an meinem Lösungsvorgang, wenn ich dies mithilfe der Lotfußpunkte machen wollen würde?
|
Notiz Profil
Quote
Link |
Kuestenkind
Senior  Dabei seit: 12.04.2016 Mitteilungen: 1945
 |     Beitrag No.4, eingetragen 2021-02-23 20:10
|
Huhu Rurien9713,
nein - leider nicht. Es fehlt z.B. immer noch ein Bild. Woher sollen wir wissen, wo bei dir die Punkte M und M' liegen? Wie lautet deine Zielgleichung? usw.
Also bitte - zeige doch das, was in der Aufgabenstellung steht: Ein Bild, deinen formulierten Satz und den Beweis.
Gruß,
Küstenkind
|
Notiz Profil
Quote
Link |
Rurien9713
Aktiv  Dabei seit: 27.11.2020 Mitteilungen: 207
 |     Beitrag No.5, vom Themenstarter, eingetragen 2021-02-23 22:45
|
Hallo leider kann ich kein Bild hochladen und daher nur beschreiben.
Mit M ist der Punkt M aus der Definition des Satzes von Menelaos gemeint und mit M‘ möchte ich einfach zeigen, dass M eindeutig ist.
|
Notiz Profil
Quote
Link |
|
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen. Lesen Sie die
Nutzungsbedingungen,
die Distanzierung,
die Datenschutzerklärung und das Impressum.
[Seitenanfang]
|