Matroids Matheplanet Forum Index
Moderiert von Kleine_Meerjungfrau Monkfish epsilonkugel
Mathematik » Stochastik und Statistik » to show: two random walks on galton-watson trees have the same distribution
Autor
Universität/Hochschule to show: two random walks on galton-watson trees have the same distribution
lilly2108
Junior Letzter Besuch: in der letzten Woche
Dabei seit: 03.05.2021
Mitteilungen: 10
  Themenstart: 2021-06-22

Hello community, I have two different Random Walks on two Galton-Watson trees and want to show that they have the same distribution. Is it enough to show that they have the same expectation for any bounded, meaurable map $F$? So I want to show: $(\mathcal{B}_{\xi_k}(\mathcal{T}_{*}),(\Psi_{\xi_k}(X_{\tau_k-j}))_{j\leq\tau_k})\stackrel{(d)}{=}(\mathcal{T}_{*}^{\leq\xi_k},(X_j)_{j\leq\tau_k})$ and I have a proof like this: $\mathsf{E}_{*}[F(\mathcal{B}_{\xi_k}(\mathcal{T}_{*}),(\Psi_{\xi_k}(X_{\tau_k-j}))_{j\leq\tau_k})\mathbf{1}_{\{ \xi_k=v,\tau_k<\tau_{*}\}}]=\mathsf{E}_{*}[F(\mathcal{T}^{\leq\bar{v}}_{*}),(X_{j})_{j\leq\tau_k})\mathbf{1}_{\{ \xi_k=\bar{v},\tau_k<\tau_{*}\}}] \\ =\mathsf{E}_{*}[F(\mathcal{T}^{\leq\xi_k}_{*}),(X_{j})_{j\leq\tau_k})\mathbf{1}_{\{ \xi_k=\bar{v},\tau_k<\tau_{*}\}}]$ Is that enough? Thank you in advance.


Eine Notiz zu diese Forumbeitrag schreiben Notiz   Profil

Wechsel in ein anderes Forum:
 Suchen    
 
All logos and trademarks in this site are property of their respective owner. The comments are property of their posters, all the rest © 2001-2021 by Matroids Matheplanet
This web site was originally made with PHP-Nuke, a former web portal system written in PHP that seems no longer to be maintained nor supported. PHP-Nuke is Free Software released under the GNU/GPL license.
Ich distanziere mich von rechtswidrigen oder anstößigen Inhalten, die sich trotz aufmerksamer Prüfung hinter hier verwendeten Links verbergen mögen.
Lesen Sie die Nutzungsbedingungen, die Distanzierung, die Datenschutzerklärung und das Impressum.
[Seitenanfang]